• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mutation in derived categories and lattice theory of torsion classes and wide subcategories

Research Project

Project/Area Number 17K14160
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

Demonet Laurent  名古屋大学, 多元数理科学研究科(国際), G30特任准教授 (70646124)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordstorsion class / lattice / gentle algebra / Representation theory / wide subcategory / Brauer graph algebra / torsion classes / lattices / gentle algebras / Torsion classes / Lattice theory / Brauer graph algebras / tau tilting theory
Outline of Final Research Achievements

The class of gentle algebras A is a classical object in representation theory and is widely studied as a typical example of algebras of tame representation type. Recently it has been applied to cluster algebras and topological Fukaya categories. It is known that A-modules are classified by strings (walks on the quiver of A which are compatible with relations). Also A is realized as a dissected marked surface, and a string is realized as a curve on it. In particular, the notion of the intersections of two strings can be defined. In a joint work with A. Chan, we constructed a canonical one-to-one correspondence between the torsion classes of the category of finite dimensional A-modules and the maximal parametrized non-crossing sets of infinite strings. This is a powerful result that does not require the functorial finiteness of torsion classes.

Academic Significance and Societal Importance of the Research Achievements

加群圏のねじれ部分圏は、導来圏の特別なt構造の加群圏への制限であり、古典的な対象であるとともに、傾理論、特に変異理論の発展により、近年盛んに調べられている。本研究では、与えられた代数の加群圏におけるねじれ部分圏の全体の成す完備束(complete lattice)を調べ、その束論的性質や代数の表現論的性質との関係を明らかにした(Iyama, Reiten, Readin, Thomasとの共同研究)。また、gentle代数と呼ばれる重要な代数に対して、ねじれ部分圏を組み合わせ論的なデータによって完全に分類することに成功した(Chanとの共同研究)。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2019 2018 2017

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (8 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results)

  • [Journal Article] τ -tilting finite algebras, bricks and g-vectors2017

    • Author(s)
      Laurent Demonet, Osamu Iyama, Gustavo Jasso
    • Journal Title

      Int. Math. Res. Not.

      Volume: 1 Issue: 3 Pages: 1-41

    • DOI

      10.1093/imrn/rnx135

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Introduction to algebras of partial triangulations2017

    • Author(s)
      Laurent Demonet
    • Journal Title

      Proceedings of the 49th Symposium on Ring and Representation Theory

      Volume: 1 Pages: 1-5

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Combinatorics of mutations and torsion classes2019

    • Author(s)
      Laurent Demonet
    • Organizer
      Cluster Algebras
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Combinatorics of mutations and torsion classes2019

    • Author(s)
      Laurent Demonet
    • Organizer
      The Mathematical Society of Japan 2019 Annual Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Representations of (acyclic) quivers, Auslander-Reiten sequences, the Caldero-Chapoton formula (4 lecture)2018

    • Author(s)
      Laurent Demonet
    • Organizer
      School on Cluster Algebras, ICTS, Bangalore, India
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Treillis des classes de torsions2018

    • Author(s)
      Laurent Demonet
    • Organizer
      Seminaire d'algebre, Universite de Versailles
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Treillis des classes de torsions2018

    • Author(s)
      Laurent Demonet
    • Organizer
      Seminaire d'algebre, Universite de Calais
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Treillis des classes de torsions2017

    • Author(s)
      Laurent Demonet
    • Organizer
      Seminaire d'algebre, IHP, Paris
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Lattices of torsion classes2017

    • Author(s)
      Laurent Demonet
    • Organizer
      International Workshop on Cluster Algebras and Related Topics, Chern Institut of Mathematics, Tianjin
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Lattices of torsion classes2017

    • Author(s)
      Laurent Demonet
    • Organizer
      Symposium on Ring Theory and Representation Theory, Yamanashi
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi