• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

p-adic differential equations on p-adic analytic spaces

Research Project

Project/Area Number 17K14161
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

Ohkubo Shun  名古屋大学, 多元数理科学研究科, 講師 (20755160)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsp進微分方程式 / 対数的増大度 / ピカールフックス方程式 / Gauss-Manin接続 / Picard-Fuchs equation
Outline of Final Research Achievements

As a result of our research, we affirmatively prove Chiarellotto-Tsuzuki conjecture of logarithmic growth of solutions of p-adic differential equations. A paper containing this result appeared in Composition Mathematica in 2021. We also prove that a variant of Chiarellotto-Tsuzuki conjecture in a way compatible with p-adic local monodromy conjecture. We also extend a decomposition theorem of p-adic differential equations over complete valuation fields proved by Kedlaya-Xiao.

Academic Significance and Societal Importance of the Research Achievements

p進微分方程式は、2010年以降に、Kedlaya, Baldassarri, Poineau, Pulitaらによる解の収束半径の理論の完成によって大きく進歩した。p進微分方程式の局所理論における残る大きな課題は、解の対数的増大度の研究であった。本研究では、その基本予想であるChiarellotto-Tsuzuki予想を肯定的に解決し、p進微分方程式の理論の応用への道を開くことができた。本予想は、フロベニウス構造という代数的情報をp進微分方程式の解の対数的増大度という解析的情報を研究をつなぐ橋である。今後は、この橋を使って、代数体上の微分方程式の大域的性質の研究が進展することが期待される。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2021 2019 2018 2017

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results)

  • [Journal Article] Logarithmic growth filtrations for -modules over the bounded Robba ring2021

    • Author(s)
      Ohkubo Shun
    • Journal Title

      Compositio Mathematica

      Volume: 157 Issue: 6 Pages: 1265-1301

    • DOI

      10.1112/s0010437x21007107

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Logarithmic growth filtrations for (\varphi,\nabla)-modules over the bounded Robba ring2021

    • Author(s)
      Shun Ohkubo
    • Journal Title

      Compositio Mathematica

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on logarithmic growth of solutions of p-adic differential equations without solvability2019

    • Author(s)
      Shun Ohkubo
    • Journal Title

      Mathematical Research Letters

      Volume: 26 Issue: 5 Pages: 1527-1557

    • DOI

      10.4310/mrl.2019.v26.n5.a13

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] A note on the convergence Newton polygons of p-adic differential equations in the regular singular case2021

    • Author(s)
      大久保俊
    • Organizer
      Arithmetic geometry research report meeting 2021
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Logarithmic growth f.iltrations for (φ, ∇)-modules over the bounded Robba ring2019

    • Author(s)
      Shun Ohkubo
    • Organizer
      RIMS Workshop Algebraic Number Theory and Related Topics
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Logarithmic growth filtrations for $(\varphi,\nabla)$-modules over the bounded Robba ring2018

    • Author(s)
      Shun Ohkubo
    • Organizer
      p-adic cohomology and arithmetic geometry 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the logarithmic growth of solutions of p-adic differential equations2018

    • Author(s)
      Shun Ohkubo
    • Organizer
      UK-Japan Winter School 2018 on Number Theory
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the logarithmic growth of solutions of p-adic differential equations2017

    • Author(s)
      Shun Ohkubo
    • Organizer
      p-adic cohomology and arithmetic geometry
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi