• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Canonical bases in equivariant K-theory and their applications

Research Project

Project/Area Number 17K14163
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

Hikita Tatsuyuki  京都大学, 数理解析研究所, 助教 (70793230)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords幾何学的表現論 / シンプレクティック特異点解消 / 標準基底 / 楕円コホモロジー / 楕円量子群 / シンプレクティック双対性 / 超幾何関数 / 錐的シンプレクティック特異点解消 / 表現論 / 代数幾何
Outline of Final Research Achievements

We defined a notion of canonical bases for equivariant K-theory of conical symplectic resolutions and formulated an analogue of Lusztig's conjecture for modular representation theory of semisimple Lie algebras. We explicitly calculated K-theoretic canonical bases for toric hyper-Kahler manifolds and proved a conjecture of Bezrukavnikov-Okounkov on the existence of real variation of stability conditions in this case. We also found that the equivariant lift of the central charge of the dual canonical bases are given by Euler type integral for GKZ hypergeometric functions over explicit cycles and proved that there exists a Koszul type t-structure on the derived category of equivariant coherent sheaves such that its heart has a graded highest weight category structure. We introduced elliptic analogue of caonical bases for toric hyper-Kahler manifolds and found a new duality of elliptic canonical bases under symplectic duality which cannot be seen at the K-theory level.

Academic Significance and Societal Importance of the Research Achievements

錐的シンプレクティック特異点解消の代数幾何や表現論に関して既存の予想の類似物を与えるだけでなく、様々な新しく興味深い現象を発見することができた。現在の技術では厳密に扱うことはまだ難しいが、ここで得られた結果は例えばシンプレクティック特異点解消の同変連接層の導来圏という代数幾何的な対象と、そのシンプレクティック双対のループ空間上の超局所偏屈層というシンプレクティック幾何的な対象が結びつくだろうというミラー対称性のような現象や、楕円標準基底の双対性と頂点作用素超代数の双対性に関係があるだろうといった様々な分野を結びつける現象を示唆している点が特に重要であると思われる。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (13 results)

All 2023 2022 2021 2020 2019 2017

All Presentation (13 results) (of which Int'l Joint Research: 3 results,  Invited: 7 results)

  • [Presentation] Elliptic bar involutions for quiver varieties2023

    • Author(s)
      Tatsuyuki Hikita
    • Organizer
      Representation theory and geometry of loop spaces
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Elliptic quantum group2023

    • Author(s)
      疋田辰之
    • Organizer
      第6回Langlands and Harmonic Analysis
    • Related Report
      2022 Annual Research Report
  • [Presentation] K理論的標準基底とその楕円化2022

    • Author(s)
      疋田辰之
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Non-toric examples of elliptic canonical bases2021

    • Author(s)
      疋田辰之
    • Organizer
      Algebraic Lie Theory and Representation Theory
    • Related Report
      2021 Research-status Report
  • [Presentation] Non-toric examples of elliptic canonical bases2021

    • Author(s)
      Tatsuyuki Hikita
    • Organizer
      MS Seminar, Kavli IPMU
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Highest weight categories arising from equivariant coherent sheaves on toric hyper-Kahler manifolds2020

    • Author(s)
      疋田辰之
    • Organizer
      阪大オンライン代数幾何学セミナー
    • Related Report
      2020 Research-status Report
  • [Presentation] Elliptic canonical bases for toric hyper-Kahler manifolds2020

    • Author(s)
      疋田辰之
    • Organizer
      東大京大代数幾何セミナー
    • Related Report
      2020 Research-status Report
  • [Presentation] Elliptic canonical bases for hypertoric varieties2019

    • Author(s)
      Tatsuyuki Hikita
    • Organizer
      Algebraic Lie Theory and Representation Theory 2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Elliptic and K-theoretic canonical bases for hypertoric varieties2019

    • Author(s)
      Tatsuyuki Hikita
    • Organizer
      Representation Theory of Algebraic Groups and Quantum Groups
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Elliptic canonical bases for toric hyper-Kahler manifolds2019

    • Author(s)
      Tatsuyuki Hikita
    • Organizer
      Geometric Representation Theory and Quantum Field Theories
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 標準基底と連接層2019

    • Author(s)
      疋田辰之
    • Organizer
      第2回数理新人セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Canonical bases and hypergeometric functions2019

    • Author(s)
      疋田辰之
    • Organizer
      第4回Langlands and Harmonic Analysis
    • Related Report
      2018 Research-status Report
  • [Presentation] Canonical bases in equivariant K-theory of conical symplectic resolutions2017

    • Author(s)
      疋田辰之
    • Organizer
      Algebraic Lie Theory and Representation Theory (ALTReT) 2017
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi