• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New development of the theory of noetherian rings using spectra of abelian categories

Research Project

Project/Area Number 17K14164
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionOsaka City University (2019-2021)
Osaka University (2017-2018)

Principal Investigator

Kanda Ryo  大阪市立大学, 大学院理学研究科, 准教授 (50748324)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsアーベル圏 / Grothendieck圏 / アトム・スペクトラム / モレキュール・スペクトラム / Feigin-Odesskii楕円代数 / 点スキーム / ネーター代数 / Yang-Baxter方程式 / R行列 / ネーター環 / 射有限群 / 色付きクイバー / Artin-Schelter正則代数 / Calabi-Yau代数 / 代数学 / 環論
Outline of Final Research Achievements

An abelian category is a notion that generalizes the category of modules over a ring and the category of quasi-coherent sheaves on a scheme. I researched the spectrum of an abelian category, which is a space associated with the abelian category. I developed the general theory of the spectrum of an abelian category, and also conducted joint work on elliptic algebras, as an example of a concrete class of rings, and we obtained results on the spaces associated with them. In joint work on the class of rings called Noether algebras, we described isomorphism classes of flat cotorsion modules in terms of the spectrum.

Academic Significance and Societal Importance of the Research Achievements

本研究でアーベル圏のスペクトラムの理論を整備することによって、既存の環論の定理に別証明を与え、より見通しよく理解できるようになった。代数多様体に対する応用としては、その準連接層の圏について、期待されていた性質を証明することができた。平坦余ねじれ加群の概念は近年、環の導来圏を理解することに用いられており、特定のクラスの環に対しては、その平坦余ねじれ加群の記述を利用して理論が構築されている。ネーター代数に対して平坦余ねじれ加群を記述する本研究は、そのような理論をネーター代数に拡張するための基礎となるものである。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (42 results)

All 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (5 results) Journal Article (8 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 8 results,  Open Access: 8 results) Presentation (26 results) (of which Int'l Joint Research: 9 results,  Invited: 14 results) Remarks (3 results)

  • [Int'l Joint Research] University of Washington/University at Buffalo(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Washington/University at Buffalo(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Washington/University at Buffalo(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Washington/University at Buffalo(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Washington/University at Buffalo(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Integrality of noetherian Grothendieck categories2022

    • Author(s)
      Ryo Kanda
    • Journal Title

      J. Algebra

      Volume: 592 Pages: 233-299

    • DOI

      10.1016/j.jalgebra.2021.10.036

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Extension groups between atoms in abelian categories2021

    • Author(s)
      Ryo Kanda
    • Journal Title

      J. Pure Appl. Algebra

      Volume: 225 Issue: 9 Pages: 106669-106669

    • DOI

      10.1016/j.jpaa.2021.106669

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Feigin and Odesskii's elliptic algebras2021

    • Author(s)
      Alex Chirvasitu, Ryo Kanda, and S. Paul Smith
    • Journal Title

      J. Algebra

      Volume: 581 Pages: 173-225

    • DOI

      10.1016/j.jalgebra.2021.04.009

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings2021

    • Author(s)
      Alex Chirvasitu, Ryo Kanda, and S. Paul Smith
    • Journal Title

      Forum Math. Sigma

      Volume: 9

    • DOI

      10.1017/fms.2020.60

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Construction of Grothendieck categories with enough compressible objects using colored quivers2020

    • Author(s)
      Ryo Kanda
    • Journal Title

      J. Pure Appl. Algebra

      Volume: 224 Issue: 1 Pages: 53-65

    • DOI

      10.1016/j.jpaa.2019.04.014

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Finiteness of the number of minimal atoms in Grothendieck categories2019

    • Author(s)
      Ryo Kanda
    • Journal Title

      J. Algebra

      Volume: 527 Pages: 182-195

    • DOI

      10.1016/j.jalgebra.2019.03.003

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] New Artin-Schelter regular and Calabi-Yau algebras via normal extensions2019

    • Author(s)
      Alex Chirvasitu, Ryo Kanda and S. Paul Smith
    • Journal Title

      Trans. Amer. Math. Soc.

      Volume: 372 Issue: 6 Pages: 3947-3983

    • DOI

      10.1090/tran/7672

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Non-exactness of direct products of quasi-coherent sheaves2019

    • Author(s)
      Ryo Kanda
    • Journal Title

      Doc. Math.

      Volume: 24 Pages: 2037-2056

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Exactness of direct products2022

    • Author(s)
      Ryo Kanda
    • Organizer
      可換環論の新しい融合セミナー II, 大阪市立大学, 日本
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Flat cotorsion modules over Noether algebras2021

    • Author(s)
      Ryo Kanda
    • Organizer
      東京名古屋代数セミナー, Zoom, オンライン
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Elliptic algebras and twisted homogeneous coordinate rings2021

    • Author(s)
      Ryo Kanda
    • Organizer
      オンライン可換環論セミナー2021, Zoom, オンライン
    • Related Report
      2021 Annual Research Report
  • [Presentation] Structure theorem for flat cotorsion modules over Noether algebras2021

    • Author(s)
      Ryo Kanda
    • Organizer
      第53回環論および表現論シンポジウム, Zoom, オンライン
    • Related Report
      2021 Annual Research Report
  • [Presentation] Flat cotorsion modules over Noether algebras and elementary duality of Ziegler spectra2021

    • Author(s)
      Ryo Kanda
    • Organizer
      第42回可換環論シンポジウム, Zoom, オンライン
    • Related Report
      2021 Annual Research Report
  • [Presentation] Extension groups between atoms in abelian categories2021

    • Author(s)
      神田 遼
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Feigin-Odesskii's elliptic algebras2020

    • Author(s)
      神田 遼
    • Organizer
      京都表現論セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 非可換正則代数とFeigin-Odesskii楕円代数2020

    • Author(s)
      神田 遼
    • Organizer
      談話会, 大阪市立大学, 日本
    • Related Report
      2019 Research-status Report
  • [Presentation] Elliptic algebras2020

    • Author(s)
      神田 遼
    • Organizer
      第9回 (非)可換代数とトポロジー, 信州大学, 日本
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Elliptic algebras and twisted homogeneous coordinate rings2020

    • Author(s)
      神田 遼
    • Organizer
      東京可換環論セミナー, 東京大学, 日本
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Feigin-Odesskii's elliptic algebras2019

    • Author(s)
      神田 遼
    • Organizer
      Algebraic Geometry Seminar, 大阪大学, 日本
    • Related Report
      2019 Research-status Report
  • [Presentation] Feigin-Odesskii's elliptic algebras2019

    • Author(s)
      神田 遼
    • Organizer
      International Russian-Japanese Conference on Interaction Between Algebraic Geometry and QFT, Moscow Institute of Physics and Technology, ロシア
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Truncated point schemes of generic graded algebras2019

    • Author(s)
      神田 遼
    • Organizer
      南大阪代数セミナー, 大阪府立大学, 日本
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Feigin-Odesskii's elliptic algebras2019

    • Author(s)
      神田 遼
    • Organizer
      南大阪代数セミナー, 大阪府立大学, 日本
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The characteristic variety of an elliptic algebra2019

    • Author(s)
      神田 遼
    • Organizer
      The 8th China-Japan-Korea International Conference on Ring Theory, 名古屋大学, 日本
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Normal extensions of Artin-Schelter regular algebras and flat families of Calabi-Yau central extensions2019

    • Author(s)
      神田 遼
    • Organizer
      日本数学会2019年度秋季総合分科会, 金沢大学, 日本
    • Related Report
      2019 Research-status Report
  • [Presentation] Feigin-Odesskii's elliptic algebras2019

    • Author(s)
      神田 遼
    • Organizer
      2019 Noncommutative Algebraic Geometry Shanghai Workshop, Fudan University, 中国
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The characteristic variety of an elliptic algebra2019

    • Author(s)
      神田 遼
    • Organizer
      第41回可換環論シンポジウム, 倉敷シーサイドホテル, 日本
    • Related Report
      2019 Research-status Report
  • [Presentation] Feigin-Odesskii's elliptic algebras2019

    • Author(s)
      神田 遼
    • Organizer
      環論・表現論セミナー, 名古屋大学, 日本
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Normal extensions of Artin-Schelter regular algebras and flat families of Calabi-Yau central extensions2018

    • Author(s)
      神田 遼
    • Organizer
      Algebra Seminar
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Integrality of noetherian Grothendieck categories2018

    • Author(s)
      神田 遼
    • Organizer
      Representation Theory and Related Topics Seminar
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Normal extensions of Artin-Schelter regular algebras and flat families of Calabi-Yau central extensions2018

    • Author(s)
      神田 遼
    • Organizer
      Maurice Auslander Distinguished Lectures and International Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Normal extensions of Artin-Schelter regular algebras and flat families of Calabi-Yau central extensions2018

    • Author(s)
      神田 遼
    • Organizer
      Workshop and 18th International Conference on Representations of Algebras (ICRA 2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Normal extensions of Artin-Schelter regular algebras and flat families of Calabi-Yau central extensions2018

    • Author(s)
      神田 遼
    • Organizer
      代数幾何学小研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Normal extensions of Artin-Schelter regular algebras and flat families of Calabi-Yau central extensions2018

    • Author(s)
      神田 遼
    • Organizer
      Recent developments in noncommutative algebra and related areas
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Atom-molecule correspondence and classification of subcategories for locally noetherian schemes2017

    • Author(s)
      神田 遼
    • Organizer
      Prospects for Commutative Algebra
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Ryo Kanda

    • URL

      https://ryokanda.net

    • Related Report
      2021 Annual Research Report 2020 Research-status Report 2019 Research-status Report
  • [Remarks] Ryo Kanda - Osaka University

    • URL

      http://www4.math.sci.osaka-u.ac.jp/~kanda/

    • Related Report
      2018 Research-status Report
  • [Remarks] Ryo Kanda - Osaka University

    • URL

      http://www.math.sci.osaka-u.ac.jp/~kanda/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi