• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

`Nice' partitions and eigenvalues of the Laplacian

Research Project

Project/Area Number 17K14179
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

Funano Kei  東北大学, 情報科学研究科, 准教授 (40614144)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsラプラシアンの固有値 / ラプラシアンの固有関数 / 凸領域 / 領域単調性 / リッチ曲率 / 普遍不等式 / ラプラシアン / 固有値 / pラプラシアン / Cheeger不等式 / リーマン多様体 / 測度集中 / 巨視的スカラー曲率 / 双曲多様体 / 極小曲面 / Laplacianの固有値 / Ricci曲率
Outline of Final Research Achievements

I studied eigenvalues and eigenfunctions of the Laplacian. Working jointly with Yohei Sakurai (Saitama university), we obtained concentration inequalities of eigenfunctions of the Laplacian and its nodal sets. We also gave an estimate of eigenvalues of the Laplacian from above in terms of subsets. The domain monotonicity of the eigenvalues of the Laplacian under Neumann boundary conditions on bounded convex domains of Euclidean spaces is studied and sharp inequalities are obtained. Furthermore, universal inequalities are obtained for the eigenvalues of the Laplacian under Neumman boundary conditions on bounded convex domains of Euclidean spaces.

Academic Significance and Societal Importance of the Research Achievements

ラプラシアンの固有値や固有関数は熱方程式等の物理学に現れる偏微分方程式の解の形を知る際に有用な情報を含んでいる。また幾何学的量とラプラシアンの固有値の関係について近年まで活発に研究されている。そうした中で多くの研究者は境界がついてる条件下ではディリクレ境界条件について研究をしてノイマン境界条件の下での研究はわずかなもので手つかずであった。そのような状況なので本研究で行ったノイマン境界条件の下での固有値の研究は一定の学術的意義があると思われる。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (26 results)

All 2024 2023 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results) Presentation (19 results) (of which Int'l Joint Research: 6 results,  Invited: 18 results) Remarks (1 results)

  • [Int'l Joint Research] Ohio state university(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] A note on domain monotonicity for the Neumann eigenvalues of the Laplacian2023

    • Author(s)
      Funano Kei
    • Journal Title

      Illinois Journal of Mathematics

      Volume: 67 Issue: 4 Pages: 677-686

    • DOI

      10.1215/00192082-10972651

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A universal inequality for Neumann eigenvalues of the Laplacian on a convex domain in Euclidean space2023

    • Author(s)
      Funano Kei
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 67 Issue: 1 Pages: 222-226

    • DOI

      10.4153/s0008439523000735

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Upper bounds for higher-order Poincare constants2020

    • Author(s)
      Funano Kei, Sakurai Yohei
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 未定 Issue: 6 Pages: 1-1

    • DOI

      10.1090/tran/8049

    • NAID

      40022530922

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Concentration of eigenfunctions of the Laplacian on a closed Riemannian manifold2019

    • Author(s)
      Kei Funano and Yohei Sakurai
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 不明 Issue: 7 Pages: 3155-3164

    • DOI

      10.1090/proc/14430

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Macroscopic scalar curvature and areas of cycles2017

    • Author(s)
      Hannah Alpert and Kei Funano
    • Journal Title

      Geometric and Functional Analysis

      Volume: 27 Issue: 4 Pages: 727-743

    • DOI

      10.1007/s00039-017-0417-8

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Two extremum problems for Neumann eigenvalues2024

    • Author(s)
      Kei Funano
    • Organizer
      Tohoku-Lorraine Matching Fund 2022 Projects’ Progress Report Meeting
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A 'domain monotonicty' for Neumann eigenvalues of the Laplacian2023

    • Author(s)
      Kei Funano
    • Organizer
      東北大学幾何学セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] A universal inequality for Neumann eigenvalues of the Laplacian on a convex domain in Euclidean space2023

    • Author(s)
      Kei Funano
    • Organizer
      福岡大学幾何セミナー
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] A universal inequality for Neumann eigenvalues of the Laplacian2023

    • Author(s)
      Kei Funano
    • Organizer
      Geometric Spectral Theory
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A note on domain monotonicty for the Neumann eigenvalues of the Laplacian2023

    • Author(s)
      船野敬
    • Organizer
      2022 年度日本数学会東北支部会
    • Related Report
      2022 Research-status Report
  • [Presentation] A 'domain monotonicty' for Neumann eigenvalues of the Laplacian2023

    • Author(s)
      kei funano
    • Organizer
      Geometric Analysis in Harmonic Analysis and PDE
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Upper bounds for higher-order Poincare constants2020

    • Author(s)
      船野敬
    • Organizer
      大阪大学数学教室談話会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Upper bounds for higher order Poincar\'{e} constants2019

    • Author(s)
      船野敬
    • Organizer
      Geometric aspects of solutions to partial differential equations
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Upper bounds for higher order Poincar\'{e} constants2019

    • Author(s)
      船野敬
    • Organizer
      Analysis and PDEs on Manifolds and Fractals
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Upper bounds for higher order Poincar\'{e} constants2019

    • Author(s)
      船野敬
    • Organizer
      Tohoku-Lorraine Conference 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Upper bounds for higher order Poincar\'{e} constants2019

    • Author(s)
      船野敬
    • Organizer
      福岡大学微分幾何セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Upper bounds for higher order Poincar\'{e} constants2019

    • Author(s)
      船野敬
    • Organizer
      慶応義塾大学幾何学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] ラプラシアンの固有関数の値の分布について2018

    • Author(s)
      船野敬
    • Organizer
      福岡大学微分幾何セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 固有値の領域単調性・非単調性について2018

    • Author(s)
      船野敬
    • Organizer
      スペクトラルグラフ理論および周辺領域
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] ラプラシアンの固有関数の集中について2018

    • Author(s)
      船野敬
    • Organizer
      幾何と解析セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Concentration of eigenfunctions of the Laplacian on a closed Riemmanian manifold2018

    • Author(s)
      船野敬
    • Organizer
      Ergodic and Geometric Group Theory EGG
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 巨視的スカラー曲率について2017

    • Author(s)
      船野敬
    • Organizer
      東北大学数学教室談話会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ハムサンドイッチからラプラシアンの固有値へ2017

    • Author(s)
      船野敬
    • Organizer
      東北大学情報科学研究科談話会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 巨視的スカラー曲率について2017

    • Author(s)
      船野敬
    • Organizer
      東京工業大学幾何学セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] Kei Funano's homepage

    • URL

      https://sites.google.com/site/keifunanoshomepage/

    • Related Report
      2018 Research-status Report 2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi