• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of Veech surfaces

Research Project

Project/Area Number 17K14184
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionShizuoka University

Principal Investigator

Shinomiya Yoshihiko  静岡大学, 教育学部, 講師 (40755930)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords平坦曲面 / Veech群 / 周期行列 / Veech曲面 / リーマン面 / 曲線複体 / タイヒミュラー空間 / 低次元トポロジー / 函数論
Outline of Final Research Achievements

This study aims to extend the properties known for Veech surfaces of genus 2 to general genera to clarify geometric properties of Veech surfaces.The first result is the clarification of the aspect of simple closed geodesics on hyperelliptic translation surfaces of general genus. This is an extention of the properties known in the case of genus 2.The second result is that we have indicated the periodic matrices of certain hyperelliptic translation surfaces. In particular, we gave an explicit indication in the case of genus 2.The third is the classification of hyperelliptic translation surfaces of genera 3 and 4 under certain conditions. In the case of genus 3, we found that there are two types of hyperelliptic translation surfaces depending on the conditions, and we extended this to the case of genus 4.

Academic Significance and Societal Importance of the Research Achievements

1つ目の成果について,証明は種数2の場合とは異なる手法を用いた.種数0の場合の平坦曲面の新たな性質を解明しそれを利用しており,更なる応用が期待できる.2つ目の成果については,超楕円的平坦曲面を一般種数で更にパラメータ付きで扱っている.これまでの周期行列に関する先行研究は個別のリーマン面に対してのものであり,パラメータ付きで周期行列を扱ったことには意義がある.また種数2の場合には周期行列の各成分を多項式で与えていることも重要な点である.3つ目の成果についてはこれまで扱われてこなかった性質の研究である.種数3,4の場合を調べることで今後の更なる性質の解明の足掛かりとなることが期待できる.

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (20 results)

All 2024 2023 2021 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (19 results) (of which Int'l Joint Research: 1 results,  Invited: 9 results)

  • [Journal Article] Period matrices of some hyperelliptic Riemann surfaces2024

    • Author(s)
      Yoshihiko Shinomiya
    • Journal Title

      Manuscripta Mathematica

      Volume: 173 Issue: 1-2 Pages: 567-590

    • DOI

      10.1007/s00229-023-01462-x

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Simple cylinders on hyperelliptic translation surfaces of genus 42024

    • Author(s)
      四之宮佳彦
    • Organizer
      2023年度 拡大版「リーマン面・不連続群論」研究集会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Hyperelliptic translation surfaces and restrictions of simple cylinders2024

    • Author(s)
      四之宮佳彦
    • Organizer
      沼津改め静岡研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Period matrices of L-shapes2023

    • Author(s)
      四之宮佳彦
    • Organizer
      日本数学会 2023年度秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Flat structures on Riemann surfaces2023

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      Workshop: Quasi-conformal mappings, hyperbolic geometry and Riemann surfaces
    • Related Report
      2022 Research-status Report
  • [Presentation] L-shapeの周期行列2023

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      沼津改め静岡研究会
    • Related Report
      2022 Research-status Report
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      RIMS Workshop Geometry of discrete groups and hyperbolic spaces
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      2021年度 研究集会「リーマン面に関連する位相幾何学」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      東工大複素解析セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      静岡複素解析幾何セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      研究集会「Riemann surfaces and related topics」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      Workshop: Quasi-conformal mappings, geodesic laminations and flat structures on Riemann surfaces
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Period matrices of some hyperelliptic Riemann surfaces2021

    • Author(s)
      Yoshihiko Shinomiya
    • Organizer
      日本数学会 2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2020

    • Author(s)
      四之宮佳彦
    • Organizer
      リーマン面に関連する位相幾何学2020
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2020

    • Author(s)
      四之宮佳彦
    • Organizer
      2019年度「リーマン面・不連続群論」研究集会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2020

    • Author(s)
      四之宮佳彦
    • Organizer
      研究集会「タイヒミュラー空間と双曲幾何学」~奥村善英先生の追悼集会~
    • Related Report
      2019 Research-status Report
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2019

    • Author(s)
      四之宮佳彦
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Research-status Report
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2019

    • Author(s)
      四之宮佳彦
    • Organizer
      関数論若手勉強会 at 金沢
    • Related Report
      2019 Research-status Report
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2019

    • Author(s)
      四之宮 佳彦
    • Organizer
      Beltrami方程式勉強会 Part II
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Simple closed geodesics on hyperelliptic translation surfaces2019

    • Author(s)
      四之宮 佳彦
    • Organizer
      Workshop on Holomorphic maps, Pluripotentials and Complex Geometry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi