Project/Area Number |
17K14192
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Osaka Metropolitan University (2022-2023) Osaka Prefecture University (2017-2021) |
Principal Investigator |
Moriya Syunji 大阪公立大学, 数学研究所, 特別研究員 (40583464)
|
Project Period (FY) |
2017-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 埋め込み解析 / 結び目の空間 / Vassiliev-Sinha スペクトル系列 / 埋め込みの微積分 / オペラッド / long knot / embedding calculus / 4次元以上の空間の中の結び目 / 四次元以上の空間における結び目 / 多様隊の中の結び目 / コホモロジー群 |
Outline of Final Research Achievements |
I constructed a spectral sequence converging to the space of knots in a manifold. Comparing to those constructed before, this spectral sequence has the merit that its E_1-page and d_1-differential can be algebraically described. Using this spectral sequence, I computed low-degree parts of the cohomology of the knot space and also partially solved a problem by Arone-Szymik about the fundamental group of the space of knots in a simply connected 4-dimensional manifolds. I also computed some higher differentials of Sinha's spectral sequence which is fundamental in this research area.
|
Academic Significance and Societal Importance of the Research Achievements |
埋め込みの空間はホモトピー論では基本的な研究対象であり、特に結び目は数理物理にも現れ、遍在的な対象である。本研究は、そのような重要な研究対象に対して、Atiyah双対性(またはDold Puppe双対性)という、この分野ではこれまで使われていなかった概念を用いて新しい計算結果を得たことに意義がある。また、この双対性を用いてSinhaのスペクトル系列について得た結果は、現在は余次元1という簡単な場合についてのみであるが、今後余次元が高い場合への応用が見込め、Vassilievの予想への一つのアプローチを与える可能性がある。
|