• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of low-dimensional symplectic manifolds in combinatorial ways

Research Project

Project/Area Number 17K14194
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionKeio University

Principal Investigator

HAYANO Kenta  慶應義塾大学, 理工学部(矢上), 准教授 (20722606)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsレフシェッツ束 / シンプレクティック多様体 / 写像類群 / モノドロミー / レフシェッツペンシル / ブレイドモノドロミー / 消滅サイクル / trisection / チェイン関係式 / Stipsicz予想 / 幾何学 / 曲面の写像類群
Outline of Final Research Achievements

We show that a surgery corresponding to the chain relations in the mapping class groups of surfaces can decrease the Kodaira dimensions of total spaces of Lefschetz fibrations. Moreover, by analyzing examples of Lefschetz fibrations appearing in the proof of this result, we construct new counterexamples of the Stipsicz conjecture on fiber-sum decomposability and existence of sections of Lefschetz fibrations.
We completely classify genus-1 holomorphic Lefschetz pencils and obtain vanishing cycles of the Lefschetz pencils in the classification list.
Baykur and Saeki gave an algorithm to obtain trisection mappings from (broken) Lefschetz fibrations. We give an algorithm to determine tirsection diagrams corresponding to trisection mappings obtained by Baykur-Saeki's algorithm from vanishing cycles of original (broken) Lefschetz fibrations.

Academic Significance and Societal Importance of the Research Achievements

Stipsicz予想の反例はこれまで種数が3以下のものしか知られていなかったが,本研究において任意種数の反例が存在することが示された。またその過程でレフシェッツペンシルのスピン構造許容可能性を,消滅サイクルから決定する方法を与えたが,この結果自体4次元多様体の基本的な位相不変量に関わるもので,その学術的意義は高い。
種数1の正則なペンシルの消滅サイクルを決定する際に用いた手法は,より高次元のシンプレクティック多様体の組み合わせ的表示の理解の助けにもなることが期待される。実際,本研究では6次元シンプレクティック多様体の組み合わせ的表示に関する新たな結果も得られている。

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (19 results)

All 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (12 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results) Remarks (1 results) Funded Workshop (1 results)

  • [Int'l Joint Research] マサチューセッツ大学(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] マサチューセッツ大学(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Classification of genus-1holomorphic Lefschetz pencils2021

    • Author(s)
      HAMADA Noriyuki、HAYANO Kenta
    • Journal Title

      TURKISH JOURNAL OF MATHEMATICS

      Volume: 45 Issue: 3 Pages: 1079-1119

    • DOI

      10.3906/mat-2008-88

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Topology of Pareto Sets of Strongly Convex Problems2020

    • Author(s)
      Naoki Hamada, Kenta Hayano, Shunsuke Ichiki, Yutaro Kabata, and Hiroshi Teramoto
    • Journal Title

      SIAM Journal on Optimization

      Volume: 30 Issue: 3 Pages: 2659-2686

    • DOI

      10.1137/19m1271439

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On diagrams of simplified trisections and mapping class groups2019

    • Author(s)
      Kenta Hayano
    • Journal Title

      Osaka Journal of Mathematics

      Volume: ー

    • NAID

      120006781486

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] An explicit example of a monodromy factorization pair for a symplectic 6-manifold2022

    • Author(s)
      Kenta Hayano
    • Organizer
      The 15th Mathematical Society of Japan-Seasonal Institute Deepening and Evolution of Applied Singularity Theory
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An explicit example of a monodromy factorization pair for a symplectic 6-manifold2021

    • Author(s)
      早野健太
    • Organizer
      4次元トポロジー
    • Related Report
      2021 Research-status Report
  • [Presentation] Stability of non-proper functions2020

    • Author(s)
      Kenta Hayano
    • Organizer
      16th International Workshop on Real and Complex Singularities
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 4次元多様体のtrisection 1,22020

    • Author(s)
      早野健太
    • Organizer
      接触構造、特異点、微分方程式及びその周辺
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Staility of non-proper functions2019

    • Author(s)
      Kenta Hayano
    • Organizer
      6th International Workshop on Singularities in Generic Geometry and its Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Classification of genus-1 holomorphic Lefschetz pencils2019

    • Author(s)
      早野健太
    • Organizer
      4次元トポロジー
    • Related Report
      2019 Research-status Report
  • [Presentation] New counterexamples to Stipsicz's conjecture on fiber-sum indecomposable Lefschetz fibrations2019

    • Author(s)
      Kenta Hayano
    • Organizer
      Branched Coverings, Degenerations, and Related Topics 2019
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Stability of non-proper functions2019

    • Author(s)
      Kenta Hayano
    • Organizer
      MSJ Spring meeting 2019
    • Related Report
      2018 Research-status Report
  • [Presentation] Stability of non-proper functions2019

    • Author(s)
      Kenta Hayano
    • Organizer
      Spring Central and Western Joint Sectional Meeting, Special Session on Real and Complex Singularities
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Stability of non-proper functions2018

    • Author(s)
      Kenta Hayano
    • Organizer
      Research on topology and differential geometry using singularity theory of differentiable maps
    • Related Report
      2018 Research-status Report
  • [Presentation] New counterexamples to Stipsicz's conjecture on fiber-sum indecomposable Lefschetz fibrations2017

    • Author(s)
      早野 健太
    • Organizer
      Four Dimensional Topology
    • Related Report
      2017 Research-status Report
  • [Presentation] On diagrams of simplified trisections and mapping class groups2017

    • Author(s)
      早野 健太
    • Organizer
      Local and global study of singularity theory of differentiable maps
    • Related Report
      2017 Research-status Report
  • [Remarks] Workshop Sapporo 2019

    • URL

      http://www.math.keio.ac.jp/~k-hayano/sapporo2019.html

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] Workshop on Lefschetz Pencils and Low dimensional Topology2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi