Constructing exact solutions to discrete and ultradiscrete equations by studying combinatorial structure.
Project/Area Number |
17K14199
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Basic analysis
|
Research Institution | The University of Tokyo |
Principal Investigator |
Nakata Yoichi 東京大学, アイソトープ総合センター, 特任助教 (40584793)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 可積分系 / セルオートマトン / 偏差分方程式 / 組合せ論 / 超離散化 / トロピカル代数 / マトロイド / 離散凸性 / 力学系 |
Outline of Final Research Achievements |
We studied properties of difference equations on the max-plus algebra and the related cellular automaton models. We developed a calculation method to solve the initival value problem for some higher ultradiscrete equations which are obtained by the ultradiscretization of the equations with Laurent property. We also proved that some functions expressed as valuated matroids, which are ultradiscretization of determinants, solve a equation according to the combinatorial structure of matroids. We explained the reason of interesting phenomenon of a cellular automaton expressed as an ultradiscrete equation.
|
Academic Significance and Societal Importance of the Research Achievements |
ある種の超離散常差分方程式に対して初期値問題を計算するアルゴリズムを開発した際に、結果から超離散系に移行して初めて発生する現象に対して説明が与えられた。これより差分方程式系と超離散系の違いについて、ある角度から説明を与えることができた。 またマトロイドと呼ばれる組合せ論的な性質をもつ対象がどのように可積分方程式と関わるのかについて知見を得た。 セルオートマトンの解析手法についても新たな方法を提案した。この方法は力学系における手法の超離散対応物と考えることができる。これは一般の写像力学系では実現不可能なもので超離散だから実現できたものである。
|
Report
(5 results)
Research Products
(2 results)