• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on convergence in law of random variables from the viewpoint of functional analysis

Research Project

Project/Area Number 17K14202
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionKumamoto University (2021)
Osaka University (2017-2020)

Principal Investigator

Naganuma Nobuaki  熊本大学, 大学院先端科学研究部(工), 准教授 (60750669)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords4次モーメント定理 / Malliavin解析 / 確率解析 / 確率微分方程式 / ラフパス解析 / 近似理論 / マリアバン解析 / 法則収束 / 非整数Brown運動 / Wienerカオス / Dyson Brown運動 / 関数解析学
Outline of Final Research Achievements

A central topic of this study is the fourth moment theorem, which ensure that convergence in law of random variables belonging to some class follows from the second and fourth moment of the random variables. In general, the convergence in law cannot be characterized by convergence of some moments of random variables, while the theorem ensures it for random variables in some class. Many researchers are interested in this theorem due to simplicity of the statement and wide range application. In this study, we tried to give an answer to the question why the theorem holds. We studied approximation of stochastic differential equation as an application of the fourth moment theorem.

Academic Significance and Societal Importance of the Research Achievements

どのような条件で確率変数列が収束するかという基本的な問題に対して、あるクラスの確率変数列に対しては簡明な答えを与えたのが4次モーメント定理である。
4次モーメント定理の応用として、確率微分方程式の近似理論の構築がある。確率微分方程式とは、偶然性を含む現象を記述するために用いられる方程式である。この方程式は解の明示的な表現を持たないので、実際の現象を考察するには数値計算が必要となる。この数値計算の理論的な保証を与えるのが近似理論であり、その基礎に4次モーメント定理がある。
本研究では、4次モーメント定理の成立理由の解明と確率微分方程式の近似理論の構築を行った。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (20 results)

All 2022 2021 2020 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (16 results) (of which Int'l Joint Research: 3 results,  Invited: 7 results)

  • [Journal Article] ASYMPTOTIC EXPANSION OF THE DENSITY FOR HYPOELLIPTIC ROUGH DIFFERENTIAL EQUATION2021

    • Author(s)
      INAHAMA YUZURU、NAGANUMA NOBUAKI
    • Journal Title

      Nagoya Mathematical Journal

      Volume: 243 Pages: 11-41

    • DOI

      10.1017/nmj.2019.29

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] ERROR ANALYSIS FOR APPROXIMATIONS TO ONE-DIMENSIONAL SDES VIA THE PERTURBATION METHOD2020

    • Author(s)
      Shigeki Aida and Nobuaki Naganuma
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 57 Issue: 2 Pages: 381-424

    • DOI

      10.18910/75919

    • NAID

      120006846164

    • ISSN
      00306126
    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2010778

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Malliavin calculus for non-colliding particle systems2020

    • Author(s)
      Naganuma Nobuaki、Taguchi Dai
    • Journal Title

      Stochastic Processes and their Applications

      Volume: 130 Issue: 4 Pages: 2384-2406

    • DOI

      10.1016/j.spa.2019.07.005

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stochastic complex Ginzburg-Landau equation with space-time white noise2017

    • Author(s)
      Masato Hoshino, Yuzuru Inahama, Nobuaki Naganuma
    • Journal Title

      Electron. J. Probab.

      Volume: 22 Issue: none Pages: 68-68

    • DOI

      10.1214/17-ejp125

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 4次モーメント定理の一般化について2022

    • Author(s)
      永沼伸顕
    • Organizer
      岡山 確率論ワークショップ
    • Related Report
      2021 Annual Research Report
  • [Presentation] 非整数Brown運動により駆動される確率微分方程式に関する幾つかの研究2021

    • Author(s)
      永沼伸顕
    • Organizer
      熊本大学談話会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 4次モーメント定理の一般化について2021

    • Author(s)
      永沼伸顕
    • Organizer
      九州確率論セミナー
    • Related Report
      2021 Annual Research Report
  • [Presentation] Asymptotic expansion of the density for hypoelliptic rough differential equation2019

    • Author(s)
      永沼 伸顕
    • Organizer
      阪大確率論セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Asymptotic expansion of the density for hypoelliptic rough differential equation2019

    • Author(s)
      Nobuaki Naganuma
    • Organizer
      Stochastic Processes and their Applications 2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Asymptotic expansion of the density for hypoelliptic rough differential equation2019

    • Author(s)
      Nobuaki Naganuma
    • Organizer
      Japanese-German Open Conference on Stochastic Analysis 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic expansion of the density for hypoelliptic rough differential equation2019

    • Author(s)
      Nobuaki Naganuma
    • Organizer
      Okayama Workshop on Stochastic Analysis 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic expansion of the density for hypoelliptic rough differential equation2019

    • Author(s)
      永沼 伸顕
    • Organizer
      新潟確率論ワークショップ
    • Related Report
      2018 Research-status Report
  • [Presentation] Malliavin calculus for Dyson Brownian motions2018

    • Author(s)
      永沼 伸顕
    • Organizer
      関西確率論セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Malliavin calculus for Dyson Brownian motions2018

    • Author(s)
      永沼 伸顕
    • Organizer
      福岡大学確率論セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Asymptotic expansion of the density for hypoelliptic rough differential equation2018

    • Author(s)
      永沼 伸顕
    • Organizer
      霧島確率論セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] 4次モーメント定理とその確率微分方程式の解の近似理論への応用2018

    • Author(s)
      永沼 伸顕
    • Organizer
      確率論早春セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Malliavin calculus for Dyson Brownian motions2018

    • Author(s)
      Nobuaki Naganuma
    • Organizer
      Workshop on "Mathematical finance and related issues"
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Wienerカオスの最近の展開2017

    • Author(s)
      永沼 伸顕
    • Organizer
      確率論ヤングサマーセミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Bessel型確率過程の分布密度について2017

    • Author(s)
      永沼 伸顕
    • Organizer
      福岡大学確率論セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Malliavin calculus for Dyson Brownian motions2017

    • Author(s)
      永沼 伸顕
    • Organizer
      関西大学 確率論セミナー
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi