• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Solvability of nonlinear dispersive equations with complicated resonance structure

Research Project

Project/Area Number 17K14220
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionUniversity of Miyazaki

Principal Investigator

Hirayama Hiroyuki  宮崎大学, 教育学部, 准教授 (90748328)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords非線形分散型方程式 / 初期値問題 / 適切性 / 共鳴 / 非線形偏微分方程式 / 共鳴構造 / 分散性 / 散逸性 / 非線形シュレディンガー方程式 / エネルギー法 / 非線型シュレディンガー方程式 / 4階シュレディンガー方程式 / Zakharov-Kuznetsov方程式 / Burgers方程式 / 漸近挙動 / Schrodinger方程式 / 散逸項 / KdV方程式 / 分散型
Outline of Final Research Achievements

For the Cauchy problem of system of nonlinear Schrodinger equations, we almost completely characterized the Sobolev indexes which allows the well-posedness by the conditions focused on resonance structure. We also considered the Cauchy problem of nonlinear fourth order Schrodinger equations which have the polynomial nonlinearity with third order or lower spatial derivatives. We obtained the results for the well-posedness of this problem, which contain the improvement of the previous works. In particular, for the case that the equation has scale invariance, we obtained the well-posedness in the scaling critical Sobolev spaces. Furthermore, we clarified that the structure of Zakharov-Kuznetsov-Burgers equation, which is one of dispersive-dissipative model, is better than the structure of Zakharov-Kuznetsov equation, which has dispersion but not dissipation. To obtain this result, we prove the well-posedness of the Cauchy problem of Zakharov-Kuznetsov-Burgers equation.

Academic Significance and Societal Importance of the Research Achievements

本研究で扱った方程式のほとんどは空間2次元以上のモデルであり, 共鳴構造が複雑であるという特徴を持つ.そのような特徴は物理現象などを背景としたモデルにも現れるため, その解析は数学だけでなく現象の立場においても重要である. 実際, 本研究で扱った方程式も物理現象を背景としているものが多い. また, 本研究の主題にもなっている分散性は波の伝播を記述するモデルに多く見られる性質であり, 分散性と非線形性による影響は共鳴構造に依存する. そのため, 共鳴構造を精密に調べることは, 非線形分散型方程式の性質を明らかにするために重要な役割を果たす.

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (25 results)

All 2023 2022 2021 2020 2019 2018 2017

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 3 results) Presentation (19 results) (of which Int'l Joint Research: 3 results,  Invited: 13 results)

  • [Journal Article] A remark on the well-posedness for a system of quadratic derivative nonlinear Schr?dinger equations2022

    • Author(s)
      Hirayama Hiroyuki、Kinoshita Shinya、Okamoto Mamoru
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 21 Issue: 10 Pages: 3309-3334

    • DOI

      10.3934/cpaa.2022101

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Well-posedness for a system of quadratic derivative nonlinear Schr"odinger equations in almost critical spaces2021

    • Author(s)
      Hirayama Hiroyuki、Kinoshita Shinya、Okamoto Mamoru
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 499 Issue: 2 Pages: 125028-125028

    • DOI

      10.1016/j.jmaa.2021.125028

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Well-posedness for the fourth-order Schr\"odinger equation with third order derivative nonlinearities2021

    • Author(s)
      Hirayama Hiroyuki、Ikeda Masahiro、Tanaka Tomoyuki
    • Journal Title

      Nonlinear Differential Equations and Applications NoDEA

      Volume: 28 Issue: 5

    • DOI

      10.1007/s00030-021-00707-6

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Well-Posedness for a system of quadratic derivative nonlinear schr¨odinger equations with radial initial data2020

    • Author(s)
      Hirayama Hiroyuki、Kinoshita Shinya、Okamoto Mamoru
    • Journal Title

      Annales Henri Poincare

      Volume: 21 Issue: 8 Pages: 2611-2636

    • DOI

      10.1007/s00023-020-00931-3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Sharp bilinear estimates and its application to a system of quadratic derivative nonlinear Schrodinger equations2019

    • Author(s)
      Hirayama Hiroyuki、Kinoshita Shinya
    • Journal Title

      Nonlinear Analysis

      Volume: 178 Pages: 205-226

    • DOI

      10.1016/j.na.2018.07.013

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Local and global well-posedness for the 2D Zakharov-Kuznetsov-Burgers equation in low regularity Sobolev space2019

    • Author(s)
      Hirayama Hiroyuki
    • Journal Title

      Journal of Differential Equations

      Volume: 印刷中 Issue: 7 Pages: 4089-4116

    • DOI

      10.1016/j.jde.2019.04.030

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 一般化KP-Burgers方程式の初期値問題の解の長時間挙動と最良な減衰評価について2023

    • Author(s)
      福田 一貴, 平山 浩之
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 一般化KP-Burgers方程式の解の長時間挙動および時間減衰評価の最良性について2023

    • Author(s)
      平山 浩之
    • Organizer
      Critical Exponent and Nonlinear Partial Differential Equations 2023
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 微分型非線形シュレディンガー方程式系のほとんど最良なソボレフにおける適切性について2021

    • Author(s)
      平山 浩之
    • Organizer
      第60回実函数論・函数解析学合同シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Well-posedness for the nonlinear fourth order Schr"odinger equation with third order derivative nonlinearities2021

    • Author(s)
      平山 浩之
    • Organizer
      研究集会「微分方程式の総合的研究」
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 微分型非線形シュレディンガー方程式系の適切性に対する最良ソボレフ指数について2021

    • Author(s)
      平山 浩之, 木下 真也, 岡本 葵
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Well-posedness for the fourth-order Schr¨odinger equation with third order derivative nonlinearities2020

    • Author(s)
      田中 智之, 平山 浩之, 池田 正弘
    • Organizer
      日本数学会2020年度秋季総合分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] 非線形シュレディンガー方程式系の適切性に関する種々の結果について2019

    • Author(s)
      平山 浩之
    • Organizer
      第141回 日本数学会九州支部例会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations with radial initial data2019

    • Author(s)
      Hiroyuki Hirayama
    • Organizer
      International Workshop on “Fundamental Problems in Mathematical and Theoretical Physics”
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Well-posedness results for a system of quadratic derivative nonlinear Schrodinger equations2019

    • Author(s)
      平山 浩之
    • Organizer
      上智大学数学談話会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations with radial initial data2019

    • Author(s)
      平山 浩之
    • Organizer
      北海道大学偏微分方程式セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations with radial initial data2019

    • Author(s)
      平山 浩之
    • Organizer
      Nonlinear Dispersive Equations in Kumamoto, 2019
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 球対称な初期値に対する非線形シュレディンガー方程式系の適切性について2019

    • Author(s)
      平山 浩之、木下 真也、岡本 葵
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Sharp well-posedness for system of quadratic derivative nonlinear Schrodinger equations2018

    • Author(s)
      平山 浩之
    • Organizer
      RIMS共同研究 非線形波動及び分散型方程式の研究
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Well-posedness for the Zakharov-Kuznetsov-Burgers equation in two space dimensions2018

    • Author(s)
      平山 浩之
    • Organizer
      名古屋大学微分方程式セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Well-posedness for the Zakharov-Kuznetsov-Burgers equation in two space dimensions2018

    • Author(s)
      Hiroyuki Hirayama
    • Organizer
      The Ninth International Couference on Information
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 非線形シュレディンガー方程式系に対する双線形評価とその適切性への応用2018

    • Author(s)
      木下真也、 平山 浩之
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] Well-posedness for the Zakharov-Kuznetsov-Burgers equation in two space dimensions2018

    • Author(s)
      平山 浩之
    • Organizer
      大阪大学微分方程式セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 空間2次元上のZakharov-Kuznetsov-Burgers方程式の適切性について2018

    • Author(s)
      平山 浩之
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Well-posedness for the Zakharov-Kuznetsov-Burgers equation in two space dimensions2017

    • Author(s)
      Hiroyuki Hirayama
    • Organizer
      Ito Workshop in Partial Differential Equations
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi