• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of stability theory of ordinary differential systems by fractal analysis

Research Project

Project/Area Number 17K14226
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionOkayama University of Science

Principal Investigator

Onitsuka Masakazu  岡山理科大学, 理学部, 准教授 (20548367)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Discontinued (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsフラクタル解析 / 2次元系 / 安定性理論 / ウラム安定性 / ウラム定数 / 摂動問題 / ハイヤーズ-ウラム安定性(HUS) / HUS定数 / ボックス次元 / 線形差分方程式 / 刻み幅 / 関数方程式論 / 解析学
Outline of Final Research Achievements

The main results of this research project are the construction of stability theory for two-dimensional linear systems and nonlinear systems by using fractal analysis, and the derivation of Ulam stability and best Ulam constants in linear differential equations and difference equations. Sufficient conditions and a necessary and sufficient condition for the rectifiability of spiral orbits for two-dimensional nonlinear systems (including quasi-linear systems) are obtained. We also succeeded in giving precise results on the perturbation problem of a two-dimensional quasi-linear system by polar coordinate transformation using generalized trigonometric functions.

Academic Significance and Societal Importance of the Research Achievements

2次元系の平衡点に巻きつく解軌道の複雑さの度合いは、解軌道の長さが有限か無限かの2つに分けられ、さらに無限の長さのとき、フラクタル次元により明確な数値として表せる。ここで、複雑さの度合いを安定性の度合いと言い換えれば、本研究は、新たな安定性解析の確立を実現したと言える。また、摂動問題の一つであるウラム安定性は、実方程式と摂動方程式(近似方程式)との解の誤差を精密に研究することで、現象を記述する数理モデルへ応用できる。実際に、本研究では、カラテオドリ型微分方程式のウラム安定性とそのウラム定数を導出し、得た結果を物体の表面温度に関する数理モデルへ応用し、厳密解と近似解の精確な誤差を与えた。

Report

(4 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (42 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (2 results) Journal Article (11 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 11 results,  Open Access: 7 results) Presentation (23 results) (of which Int'l Joint Research: 7 results,  Invited: 2 results) Remarks (5 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Concordia College/University of Arkansas at Little Rock(米国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Universidade de Brasilia(ブラジル)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] A necessary and sufficient condition for Hyers-Ulam stability of first-order periodic linear differential equations2020

    • Author(s)
      Fukutaka Ryuma、Onitsuka Masakazu
    • Journal Title

      Applied Mathematics Letters

      Volume: 100 Pages: 1-7

    • DOI

      10.1016/j.aml.2019.106040

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hyers-Ulam Stability and Best Constant for Cayley h-Difference Equations2020

    • Author(s)
      Anderson Douglas R.、Onitsuka Masakazu
    • Journal Title

      Bulletin of the Malaysian Mathematical Sciences Society

      Volume: 2020 Issue: 6 Pages: 1-16

    • DOI

      10.1007/s40840-020-00920-z

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Hyers-Ulam stability of second-order nonhomogeneous linear difference equations with a constant stepsize2020

    • Author(s)
      Onitsuka Masakazu
    • Journal Title

      Journal of Computational Analysis and Applications

      Volume: 28 Pages: 152-165

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Best Constant for Hyers-Ulam Stability of Second-Order h-Difference Equations with Constant Coefficients2019

    • Author(s)
      Anderson Douglas R.、Onitsuka Masakazu
    • Journal Title

      Results in Mathematics

      Volume: 74 Issue: 4 Pages: 1-16

    • DOI

      10.1007/s00025-019-1077-9

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Hyers-Ulam Stability of a Discrete Diamond-Alpha Derivative Equation2019

    • Author(s)
      Anderson Douglas R.、Onitsuka Masakazu
    • Journal Title

      Frontiers in Functional Equations and Analytic Inequalities, Springer New york

      Volume: 2019 Pages: 237-254

    • DOI

      10.1007/978-3-030-28950-8_14

    • ISBN
      9783030289492, 9783030289508
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Ulam Stability for a Class of Hill’s Equations2019

    • Author(s)
      Fukutaka Ryuma、Onitsuka Masakazu
    • Journal Title

      Symmetry

      Volume: 11 Issue: 12 Pages: 1-15

    • DOI

      10.3390/sym11121483

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hyers-Ulam stability for a discrete time scale with two step sizes2019

    • Author(s)
      Anderson Douglas R.、Onitsuka Masakazu
    • Journal Title

      Applied Mathematics and Computation

      Volume: 344-345 Pages: 128-140

    • DOI

      10.1016/j.amc.2018.10.014

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Hyers-Ulam stability of first order linear differential equations of Caratheodory type and its application2019

    • Author(s)
      Onitsuka Masakazu
    • Journal Title

      Applied Mathematics Letters

      Volume: 90 Pages: 61-68

    • DOI

      10.1016/j.aml.2018.10.013

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Best constant in Hyers?Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient2019

    • Author(s)
      Fukutaka Ryuma、Onitsuka Masakazu
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 473 Issue: 2 Pages: 1432-1446

    • DOI

      10.1016/j.jmaa.2019.01.030

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales2018

    • Author(s)
      Anderson Douglas R.、Onitsuka Masakazu
    • Journal Title

      Demonstratio Mathematica

      Volume: 51 Issue: 1 Pages: 198-210

    • DOI

      10.1515/dema-2018-0018

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Hyers-Ulam stability of first-order nonhomogeneous linear difference equations with a constant stepsize2018

    • Author(s)
      M. Onitsuka
    • Journal Title

      Applied Mathematics and Computation

      Volume: 330 Pages: 143-151

    • DOI

      10.1016/j.amc.2018.02.036

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Hill方程式のHyers-Ulam安定性とHUS定数2020

    • Author(s)
      福髙 龍馬, 鬼塚 政一
    • Organizer
      日本数学会 中国・四国支部例会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Hyers-Ulam stability for first-order linear differential equations with periodic coefficient2019

    • Author(s)
      M. Onitsuka
    • Organizer
      The 11th Colloquium on the Qualitative Theory of Differential Equations
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Hyers-Ulam stability and best constant for second-order linear difference equations2019

    • Author(s)
      M. Onitsuka
    • Organizer
      The 25th International Conference on Difference Equations and Applications
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] ダイヤモンドアルファ差分方程式のウラム安定性2019

    • Author(s)
      鬼塚 政一
    • Organizer
      日本数学会2019年度秋季総合分科会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Hill方程式のHyers-Ulam安定性2019

    • Author(s)
      福髙 龍馬, 鬼塚 政一
    • Organizer
      第六回ODE若手セミナー
    • Related Report
      2019 Annual Research Report
  • [Presentation] 1階周期線形微分方程式に対する Hyers-Ulam 安定性と最小のHUS定数2019

    • Author(s)
      福髙 龍馬, 鬼塚 政一
    • Organizer
      日本数学会中国・四国支部例会
    • Related Report
      2018 Research-status Report
  • [Presentation] 2次元半分線形系の摂動について2019

    • Author(s)
      板倉 健太, 鬼塚 政一, 田中 敏
    • Organizer
      日本数学会中国・四国支部例会
    • Related Report
      2018 Research-status Report
  • [Presentation] ダイヤモンドアルファ差分方程式におけるウラム安定性2019

    • Author(s)
      鬼塚 政一
    • Organizer
      RIMS 共同研究(グループ型)「常微分方程式の手法による非線形問題の探求」
    • Related Report
      2018 Research-status Report
  • [Presentation] Hyers-Ulam stability of second-order linear difference equations with constant coefficients2019

    • Author(s)
      鬼塚 政一
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Best constant in Hyers-Ulam stability of first-order nonhomogeneous linear difference equations with a constant stepsize2018

    • Author(s)
      M. Onitsuka
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Hyers-Ulam stability for periodic linear differential equations of first order2018

    • Author(s)
      R. Fukutaka, M. Onitsuka
    • Organizer
      Japan-China Joint Workshop on Differential and Difference Equations and Related Topics in Osaka 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 周期係数をもつ1階同次線形微分方程式の Hyers-Ulam 安定性と最良定数2018

    • Author(s)
      福髙 龍馬, 鬼塚 政一
    • Organizer
      第五回ODE若手セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Characteristic equation for autonomous planar half-linear differential systems2018

    • Author(s)
      田中 敏, 鬼塚 政一
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] Box dimension of solution curves for a class of two-dimensional linear differential systems2018

    • Author(s)
      鬼塚 政一, 田中 敏
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] 1階非同次線形差分方程式の Hyers-Ulam 安定性と刻み幅の関係2018

    • Author(s)
      鬼塚 政一
    • Organizer
      RIMS 共同研究(グループ型)「非線形問題への常微分方程式の手法によるアプローチ」
    • Related Report
      2017 Research-status Report
  • [Presentation] 微小な刻み幅をもつ 1 階同次線形差分方程式の Aoki-Rassias 安定性2018

    • Author(s)
      眞鍋 佳菜子, 鬼塚 政一
    • Organizer
      日本数学会中国・四国支部例会
    • Related Report
      2017 Research-status Report
  • [Presentation] 変数係数をもつ 1 階非同次線形微分方程式の Hyers-Ulam 安定性2018

    • Author(s)
      福高 龍馬, 鬼塚 政一
    • Organizer
      日本数学会中国・四国支部例会
    • Related Report
      2017 Research-status Report
  • [Presentation] 1階同次線形差分方程式の刻み幅が Hyers-Ulam 安定性に与える影響2017

    • Author(s)
      鬼塚 政一, 眞鍋 佳菜子
    • Organizer
      第四回ODE若手セミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] 時変係数をもつ1階非同次線形微分方程式の Hyers-Ulam 安定性2017

    • Author(s)
      福高 龍馬, 鬼塚 政一
    • Organizer
      第四回ODE若手セミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] 2次元定数係数線形差分方程式系の原点の幾何学的分類2017

    • Author(s)
      谷本 陽輝, 鬼塚 政一
    • Organizer
      第四回ODE若手セミナー
    • Related Report
      2017 Research-status Report
  • [Presentation] Best constant in Hyers-Ulam stability of first-order nonhomogeneous linear difference equations2017

    • Author(s)
      M. Onitsuka
    • Organizer
      Japan-China Joint Workshop on Ordinary Differential Equations and Related Topics in Osaka 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] On the Hyers-Ulam stability of first-order nonhomogeneous linear difference equations2017

    • Author(s)
      M. Onitsuka
    • Organizer
      The 17th International Conference on Functional Equations and Inequalities
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Integral Average Conditions for Oscillation of Damped Half-linear Differential Equations2017

    • Author(s)
      M. Onitsuka
    • Organizer
      International Conference on Differential & Difference Equations and Applications 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Remarks] 常微分方程式における最近の動向とその発展

    • URL

      http://www.xmath.ous.ac.jp/~onitsuka/workshop2019_1.html

    • Related Report
      2019 Annual Research Report
  • [Remarks] 鬼塚政一 (Onitsuka Masakazu) 研究室ホームページ

    • URL

      https://www.xmath.ous.ac.jp/~onitsuka/

    • Related Report
      2018 Research-status Report
  • [Remarks] 岡山理科大学 教員データベース

    • URL

      https://portal.pub.ous.ac.jp/KyoinDB/KyoinDB_Search.asp

    • Related Report
      2018 Research-status Report
  • [Remarks] 鬼塚政一 (Onitsuka Masakazu) 研究室ホームページ

    • URL

      http://www.xmath.ous.ac.jp/~onitsuka/

    • Related Report
      2017 Research-status Report
  • [Remarks] 岡山理科大学 教員データベース

    • URL

      https://edb.pub.ous.ac.jp/OUSEducatorDB

    • Related Report
      2017 Research-status Report
  • [Funded Workshop] RIMS Workshop Recent Trends in Ordinary Differential Equations and Their Developments2019

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi