Project/Area Number |
17K14703
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Control engineering/System engineering
|
Research Institution | Osaka Prefecture University |
Principal Investigator |
KANATA Sayaka 大阪府立大学, 工学(系)研究科(研究院), 講師 (60605567)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 環境適応 / 自律ロボット / 自律型移動ロボット / quadrotor helicopter / センサ情報に基づく制御 / 未知環境 / 飛行ロボット / 階層化制御システム / 移動ロボット |
Outline of Final Research Achievements |
The purpose of this research is to realize a robot that can accomplish a task in an unknown environment. Focusing on the fact that living organisms have simultaneously developed a brain, a body structure, and receptors, we aimed to construct a mechanism to realize action selection that ignores the achievement of lower objectives in order to achieve higher objectives by hierarchizing the action selection mechanism according to sensor information. Specifically, we targeted uneven terrain running by a wheeled robot and autonomous flight by a multi-rotor helicopter. We proposed a sensor-based hierarchical control algorithm for independent action decisions by multiple layers, and confirmed its effectiveness through numerical and empirical experiments.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は未知環境におけるロボットの環境適応性の実現に向けて,ロボットの感覚器(センサ)-身体(構造)-脳(行動決定)の3つをセットとして構築する点が特色である.生物の環境適応的能力に着眼した本手法は,環境の認知能力と行動の精密さとが分離不可能であり,検出能力から行動決定までを同時に設計する必要性を追求したものである. 本研究成果は,ロボットに本来求められてきた災害現場などの危険な環境で「ヒトに代わって作業する」という能力実現に必要となる基礎的知見である.
|