Fabrication of polysilicon using silicon nanoparticles and it's application for wire type solar cells
Project/Area Number |
17K14921
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Energy engineering
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Kato Shinya 名古屋工業大学, 工学(系)研究科(研究院), 助教 (10775844)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 結晶シリコン太陽電池 / ナノシリコン / ホットプレス / 太陽電池 / 光閉じ込め / シリコンナノ粒子 / シリコン太陽電池 / ナノ材料 / シリコン |
Outline of Final Research Achievements |
Crystalline silicon (c-Si) solar cells have been widely used due to high efficiency and abundant material. Therefore, there is a growing interest in developing thin-film c-Si solar cells. This study fabricated a SiNP layer via a spin coating technique to simplify the process and reduce cost of execution. The influence of hot press treatment on the resistivity of the SiNP film was investigated. The resistivity of the SiNP film without any treatment was high owing to the improvement of connections among SiNPs. Resistivity of the SiNP film successfully decreased from 2.05 to 0.50 Moh/sq because the necking of the SiNP film was improved via the hot press treatment. An intrinsic silicon nanoparticle (i-SiNP) layer was fabricated using the spin-coating technique and utilized as the active layer of a solar cell. To fabricate a solar cell with an i-SiNP active layer, a-Si was used to synthesize the p- and n-type doping layers. The open-circuit voltage of the cell was 155 mV.
|
Academic Significance and Societal Importance of the Research Achievements |
学術的意義は、従来では難しかった結晶シリコン太陽電池の薄膜化する新規技術を開発し、容易に10μm以下の膜厚の太陽電池構造を形成できることを示した。シリコンナノ粒子を用いた技術は世界でもほとんどなく、本研究の技術が確立できれば世界をリードできる。 社会的意義としては、太陽電池の高効率化・低コスト化技術を示したたことで、さらなる普及に寄与することができる。太陽電池の普及は環境問題とエネルギー問題を解決するために必要であり、本研究がさらに発展すれば十分に普及が期待できる。
|
Report
(4 results)
Research Products
(8 results)