Development of real-time coding imaging method for minimally invasive in vivo nano measurement of the heart
Project/Area Number |
17K15102
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Biophysics
|
Research Institution | Chubu University |
Principal Investigator |
SHINTANI Seine 中部大学, 生命健康科学部, 助教 (40650536)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 電子顕微鏡ライブイメージング / コンピュテーショナルフォトグラフィ / 走査型電子顕微鏡 / 液体レンズ / 画像解析 / 生物物理学 / バイオイメージング / 低侵襲In vivoナノ計測 / 心臓イメージング / ロボット顕微鏡システム / 符号化撮像 / 電子顕微鏡 / In vivo imaging / 心臓拍動 |
Outline of Final Research Achievements |
The method of analyzing the behavior of biomolecules and their aggregates inside cells is almost limited to live imaging with an optical microscope using an objective lens with a high numerical aperture. However, using a 100x oil immersion objective with a numerical aperture of 1.4, the depth of focus is less than 300 nanometers. In order to measure a three-dimensional and dynamic measurement target with high resolution, we have developed the following two measurement methods. 1. An optical microscope system that extends the depth of focus by performing deconvolution of the point spread function on the image obtained by moving the liquid lens whose curvature changes with the applied voltage at high speed. 2. A method of live imaging a biological sample in a solution environment with a scanning electron microscope. It is expected to be applied to microscopic live imaging of three-dimensional and dynamic measurement targets such as the heart.
|
Academic Significance and Societal Importance of the Research Achievements |
従来困難であった、立体的で動的な計測対象の高分解能なライブイメージングを2種類の方法で可能にした。液体レンズを組み入れた光学顕微鏡系は、端的に言えば従来の光学顕微鏡系の高さ方向の計測領域を拡張するものである。もう一方の溶液環境下の生体試料を走査型電子顕微鏡でライブイメージングする方法は、高分解能計測と立体的で動的な対象の計測を両立させる方法として進歩性が大きい。具体的には、高さ方向の計測領域が光学顕微鏡系の50倍以上で直径20nmの繊維の計測も行えた。Abbeの公式に基づく光学顕微鏡の分解能は200nmである。その10倍以上の分解能をもつ本手法は様々な計測に活用できると期待される。
|
Report
(4 results)
Research Products
(35 results)
-
-
-
-
-
-
-
-
[Journal Article] Dynamic properties of bio-motile systems as a liquid-crystalline structure2017
Author(s)
Shin'ichi Ishiwata, Makito Miyazaki, Katsuhiko Sato, Koutaro Nakagome, Seine A. Shintani, Fuyu Kobirumaki-Shimozawa, Norio Fukuda, Kazuya Suzuki, Jun Takagi, Yuta Shimamoto, and Takeshi Itabashi
-
Journal Title
Mol. Cryst. Liq. Cryst.
Volume: 印刷中
Issue: 1
Pages: 127-150
DOI
Related Report
Peer Reviewed / Open Access
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-