• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Creation of automatic tooth classification algorithm using artificial intelligence and its application to identification system

Research Project

Project/Area Number 17K17113
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Pathobiological dentistry/Dental radiology
Research InstitutionAsahi University

Principal Investigator

Nishiyama Wataru  朝日大学, 歯学部, 助教 (80631613)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords人工知能 / 歯式自動分類 / 歯科X線撮影 / パノラマX線画像 / 歯科X線撮影 / パノラマX線画像 / Deep Learning / 身元確認 / 自動診断
Outline of Final Research Achievements

A large number of unidentified persons occurred in the Great East Japan Earthquake, and dental information played a major role in identifying individuals. The collation of dental information was automated, but it required a large number of personnel to collect dental information from unidentified bodies. We have developed an algorithm that uses artificial intelligence "Deep Learning" to automatically extract dental information from a panoramic radiography, which is a general image in the dental field. Three algorithms have been developed: (1) detection of a single tooth, (2) automatic tooth type classification, and (3) tooth condition classification. (1) Sensitivity 96.4% for detection of single tooth, (2) Accuracy 93.2% for automatic tooth type classification, (3) Sensitivity 98.0% for tooth condition classification, indicating the possibility of automatic extraction of dental information.

Academic Significance and Societal Importance of the Research Achievements

パノラマから歯科情報を自動抽出が可能となれば緊急時に必要となる医療資源の削減につながり、照合を早期に行なうことにより経時的な遺体の劣化による個人特定のための情報消失も防ぐことができる。また医療施設のパノラマX線撮影装置に自動抽出システムを採用することにより平時の恒常的な歯科情報蓄積が可能となり、身元不明遺体の生前情報の採取が容易になる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2020 2019 2018

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (1 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data.2020

    • Author(s)
      Muramatsu C, Morishita T, Takahashi R, Hayashi T, Nishiyama W, Ariji Y, Zhou X, Hara T, Katsumata A, Ariji E, Fujita H
    • Journal Title

      Oral Radiology (online first)

      Volume: online first Issue: 1 Pages: 0-0

    • DOI

      10.1007/s11282-019-00418-w

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 歯科的個人識別のためのRelation Networks for Object Detectionを用いた歯科用Cone-beam CTにおける歯牙の検出2019

    • Author(s)
      沓名 将太, 村松 千左子, 林 達郎, 周 向栄, 西山 航, 有地 淑子, 原 武史, 勝又 明敏, 有地 榮一郎, 藤田 広志
    • Journal Title

      日本医用画像工学会大会予稿集

      Volume: 38 Pages: 514-517

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 口内法撮影における受像体周囲の線量の推定 手指および撮影補助具による受像体保持方法の比較2019

    • Author(s)
      西山 航, 林 裕晃, 岩田 哲成, 泉 雅浩, 横矢 隆二, 有地 榮一郎, 岡崎 徹, 勝又 明敏
    • Journal Title

      歯科放射線

      Volume: 58 Pages: 66-72

    • NAID

      130007629056

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 口内法撮影における受像体周囲の線量の推定 ― 手指および撮影補助具による受像体保持方法の比較―2019

    • Author(s)
      西山航, 林裕晃, 岩田哲成, 泉雅浩, 横矢隆二, 有地榮一郎, 岡崎徹, 勝又明敏
    • Journal Title

      歯科放射線

      Volume: 58(2) Pages: 66-72

    • NAID

      130007629056

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Morphological classification of the cortical bone layer using deep learning in panoramic radiography2018

    • Author(s)
      W Nishiyama,Y Yanashita, C Muramatsu, F Hiroshi, A Katsumata
    • Organizer
      Radiologic Society of North America (RSNA) Annual Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi