• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of four-dimensional deep convolutional neural network-based nodular liver lesion detection software in Gd-EOB-DTPA-enhanced MRI.

Research Project

Project/Area Number 17K17653
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Medical systems
Medical Physics and Radiological Technology
Research InstitutionThe University of Tokyo

Principal Investigator

Takenaga Tomomi  東京大学, 医学部附属病院, 特任研究員 (80779786)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords自動検出 / FC-ResNet / Gd-EOB-DTPA / 深層畳み込みニューラルネットワーク / segmentation / 4D-DCNN / CADe / MRI / EOB-MRI
Outline of Final Research Achievements

The purpose of this study is to develop software for nodular liver lesion (metastatic liver lesion and hepatocellular carcinoma) detection in Gd-EOB-DTPA-enhanced MRI. The results of this study are as follows: (1) database constructed by 1.5 and 3.0 T MRI scanners from multivendor, (2) development of software for nodular liver lesion detection in Gd-EOB-DTPA-enhanced MRI, (3) automated liver segmentation to improve the accuracy of software for nodular liver lesion detection

Academic Significance and Societal Importance of the Research Achievements

肝転移,肝細胞癌において早期発見,適切な治療が生命予後の改善に重要である。現在、肝転移,肝細胞癌の検査の主流はEOB-MR画像となってきているが,EOB-MR画像を用いた肝結節性病変を自動検出する手法は申請者の知る限り開発されていない.本システムにより,EOB-MRI検査における結節性病変の診断能力が向上し,①より適切な治療法の選択や多発腫瘍の確実かつ完全な切除,②HCCや肝転移の適切な治療による担癌患者の生命予後の改善,③放射線科医による画像診断の精度向上および負担軽減など,さまざまな立場の人々に利益のある結果が得られると期待される.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Four-dimensional fully convolutional residual network-based liver segmentation in Gd-EOB-DTPA-enhanced MRI2019

    • Author(s)
      Tomomi Takenaga, Shouhei Hanaoka, Yukihiro Nomura, Mitsutaka Nemoto, Masaki Murata, Takahiro Nakao, Soichiro Miki, Takeharu Yoshikawa, Naoto Hayashi & Osamu Abe
    • Journal Title

      International Journal of Computer Assisted Radiology and Surgery

      Volume: 14 Issue: 8 Pages: 1259-1266

    • DOI

      10.1007/s11548-019-01935-z

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Presentation] A preliminary study of the computerized detection of nodular liver lesion in Gd-EOB-DTPA-enhanced magnetic resonance images with 4D CNN2018

    • Author(s)
      Tomomi Takenaga
    • Organizer
      Computer Assisted Radiology and Surgery(CARS)2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] FC-ResNetを用いたGd-EOB-DTPA造影MR画像における肝臓セグメンテーション2018

    • Author(s)
      竹永智美
    • Organizer
      第2回人工知能応用医用画像研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] 3D-DCNNを用いたEOB-MR画像における肝結節病変自動検出法の開発2017

    • Author(s)
      竹永智美
    • Organizer
      第36回日本医用画像工学会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi