• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a digital human model capable of workload prediction considering muscle fatigue

Research Project

Project/Area Number 17K17871
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Human interface and interaction
Production engineering/Processing studies
Research InstitutionKobe University

Principal Investigator

Nishida Isamu  神戸大学, 工学研究科, 助教 (40776556)

Research Collaborator Daiju Yuki  
Miura Hayato  
Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords筋骨格モデル / 冗長筋 / 疲労モデル / デジタルヒューマンモデル / 筋疲労 / 作業負荷 / 人体 / ヒューマセンタード生産 / 生産工学 / 生物・生体工学
Outline of Final Research Achievements

The purpose of this study is to develop a digital human model that can predict workload according to muscle fatigue. In order to achieve this purpose, we proposed a musculoskeletal model that takes into account the role of redundant muscles that was not considered in the conventional musculoskeletal model. The redundant muscles are the muscles that act in opposition to the prime movers or as agonists of a movement. When the roles of this is ignored, the predicted muscle force is smaller than the actual one.
Furthermore, we proposed a new muscle fatigue and recovery model that can predict the degree of muscle fatigue. The feature of this model is that it can predict muscle fatigue, considering the roles of slow-twitch and fast-twitch muscles that could not be considered before.

Academic Significance and Societal Importance of the Research Achievements

我が国では2007年に高齢化率が20%を超え,超高齢社会に突入している.また,若年層の製造業者の減少により製造現場での高齢化が大きな問題となっている.製造現場での作業者の高齢化が進むと,作業者の身体的な負担が増えるために作業の安全性や効率が損なわれることになる.本研究では,これらの課題を克服するために,作業者ごとに異なる筋力および疲労進展の程度などの身体特性を考慮して,作業時の筋肉の負荷を予測することが可能なデジタルヒューマンモデルを実現した.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Dynamic model of muscle fatigue and recovery considering the roles of slow-twitch and fast-twitch muscles (Validation with a pulling motion)2019

    • Author(s)
      MIURA Hayato、NISHIDA Isamu、SHIRASE Keiichi
    • Journal Title

      Mechanical Engineering Journal

      Volume: 6 Issue: 1 Pages: 18-00498-18-00498

    • DOI

      10.1299/mej.18-00498

    • NAID

      130007592203

    • ISSN
      2187-9745
    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] Muscle force prediction method considering the role of antagonistic muscle2018

    • Author(s)
      Yuki Daijyu, Isamu Nishida, Keiichi Shirase
    • Organizer
      9th International Conference on Applied Human Factors and Ergonomics (AHFE 2018) and the Affiliated Conferences
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Muscle Force Prediction Method Considering the Role of Antagonistic Muscle2018

    • Author(s)
      Yuki Daijyu, Isamu Nishida, Keiichi Shirase
    • Organizer
      9th Applied Human Factors and Ergonomics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 冗長筋群を考慮した筋骨格モデルによる筋力推定2017

    • Author(s)
      第十 祐幹,西田 勇,白瀬 敬一
    • Organizer
      日本機械学会スポーツ工学・ヒューマンダイナミクス2017
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi