• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Derivation of new discrete integrable systems and its applications to inverse eigenvalue problems

Research Project

Project/Area Number 17K18229
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Basic analysis
Research InstitutionKyoto Sangyo University

Principal Investigator

Akaiwa Kanae  京都産業大学, 情報理工学部, 准教授 (30771878)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords逆固有値問題 / 全非負行列 / 離散可積分系 / 直交多項式 / 非負行列
Outline of Final Research Achievements

Inverse eigenvalue problems (IEPs) are problems to construct matrices with prescribed eigenvalues. Especially, it is difficult to solve IEPs for totally nonnegative (TN) matrices, where all minors are nonzero.
Nonlinear equations whose solutions are explicitly expressed are called integrable systems, and time-discretization of integrable systems are discrete integrable systems. One of typical discrete integrable systems is discrete Toda equation.
In this research, we proposed new algorithms to solve IEPs for a band TN matrix with an arbitrary bandwidth, and a TN matrix with zig-zag structure called Laurent-Jacobi matrix based on discrete two-dimensional Toda equation with a reduction condition, and discrete relativistic Toda equation, respectively.

Academic Significance and Societal Importance of the Research Achievements

逆固有値問題研究の多くは行列解析分野からのアプローチであり、ある固有値をもつ行列の性質や特定のサイズ・特徴についての研究が多い。本研究のように、指定した固有値をもつ行列を具体的に作成する手法は珍しいため、可積分系分野だけでなく行列解析分野へも貢献できる。近似解ではなく厳密解を有限回反復で求められることも大きな特色である。
提案手法はパラメータの条件を緩めればTN行列以外の行列も作成可能なため汎用性が高い。TN行列が現れる建築物の構造解析等の実問題はもちろんのこと、他の工学的・理学的問題への応用が期待される。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (22 results)

All 2023 2022 2021 2020 2019 2018 2017 2016

All Journal Article (6 results) (of which Peer Reviewed: 5 results,  Open Access: 5 results,  Acknowledgement Compliant: 2 results) Presentation (16 results) (of which Int'l Joint Research: 6 results)

  • [Journal Article] An improved algorithm for solving an inverse eigenvalue problem for band matrices2022

    • Author(s)
      Kanae Akaiwa, Akira Yoshida, Koichi Kondo
    • Journal Title

      Electronic Journal of Linear Algebra

      Volume: 38 Pages: 745-759

    • DOI

      10.13001/ela.2022.7475

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An improved algorithm for solving an inverse eigenvalue problem for band matrices2020

    • Author(s)
      Kanae Akaiwa, Akira Yoshida and Koichi Kondo
    • Journal Title

      Electronic Journal of Linear Algebra

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Totally nonnegativeなLaurent-Jacobi行列の逆固有値問題の解法について2020

    • Author(s)
      赤岩 香苗, 前田 一貴
    • Journal Title

      九州大学応用力学研究所研究集会報告

      Volume: 2019AO-S2 Pages: 157-162

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] 離散戸田方程式を用いた要素および固有値が指定された逆固有値問題の解法2018

    • Author(s)
      赤岩 香苗,谷口 雄大,近藤弘一
    • Journal Title

      研究集会報告 非線形波動研究の新潮流ー理論とその応用ー

      Volume: 29AO-S7 Pages: 101-106

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An extended Fibonacci sequence associated with the discrete hungry Lotka-Volterra system2017

    • Author(s)
      Masato Shinjo, Kanae Akaiwa, Masashi Iwasaki, Yoshimasa Nakamura
    • Journal Title

      International Journal of Biomathematics

      Volume: 10 Issue: 03 Pages: 1750043-1750043

    • DOI

      10.1142/s1793524517500437

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] An arbitrary band structure construction of totally nonnegative matrices with prescribed eigenvalues2016

    • Author(s)
      Kanae Akaiwa, Yoshimasa Nakamura, Masashi Iwasaki, Akira Yoshida, Koichi Kondo
    • Journal Title

      Numer. Algor.

      Volume: - Issue: 4 Pages: 1079-1101

    • DOI

      10.1007/s11075-016-0231-7

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] 日本プロ野球における最高のアベレージヒッターの検討2023

    • Author(s)
      藤井 朝,赤岩 香苗
    • Organizer
      第21回計算数学研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 可積分系と行列固有値問題2022

    • Author(s)
      赤岩 香苗
    • Organizer
      日本応用数理学会 第3回若手研究交流会
    • Related Report
      2022 Research-status Report
  • [Presentation] 離散可積分系とある種の構造をもつ行列の逆固有値問題2021

    • Author(s)
      赤岩 香苗
    • Organizer
      明治非線型数理サマーセミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] 離散2次元戸田方程式に基づく逆固有値問題の解法を用いた帯TN行列の作成2020

    • Author(s)
      岡鼻 小春, 赤岩 香苗
    • Organizer
      2020年度日本応用数理学会年会
    • Related Report
      2020 Research-status Report
  • [Presentation] Construction of Laurent-Jacobi matrices with prescribed eigenvalues via orthogonal polynomials2019

    • Author(s)
      Kanae Akaiwa
    • Organizer
      China-Japan Workshop on Integrable Systems 2019 (CJJWIS2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 可積分系と行列固有値問題2019

    • Author(s)
      赤岩 香苗
    • Organizer
      2019年度日本応用数理学会年会 若手の会 分野横断型研究交流会
    • Related Report
      2019 Research-status Report
  • [Presentation] An inverse eigenvalue problem for pentadiagonal oscillatory matrices2019

    • Author(s)
      Kanae Akaiwa, Kazuki Maeda
    • Organizer
      International Conference on Matrix Analysis and its Applications (MAT TRIAD2019)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Totally nonnegativeなLaurent-Jacobi行列の逆固有値問題の解法について2019

    • Author(s)
      赤岩 香苗, 前田 一貴
    • Organizer
      令和元年度 九州大学応用力学研究所 共同利用研究集会 非線形波動研究の多様性
    • Related Report
      2019 Research-status Report
  • [Presentation] 離散可積分系から見る行列の逆固有値問題2019

    • Author(s)
      赤岩 香苗
    • Organizer
      津田塾大学 数学・計算機科学研究所 研究集会「離散力学系と組合せ論」
    • Related Report
      2018 Research-status Report
  • [Presentation] ある種の帯行列の逆固有値問題の解法について2019

    • Author(s)
      赤岩 香苗, 前田 一貴
    • Organizer
      2019年度日本応用数理学会連合発表会
    • Related Report
      2018 Research-status Report
  • [Presentation] An inverse eigenvalue problem for lower Hessenberg matrices with prescribed entries2018

    • Author(s)
      Kanae Akaiwa, Koichi Kondo
    • Organizer
      SIAM Conference on Applied Linear Algebra (SIAM-ALA2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] An approach to inverse eigenvalue problems from discrete integrable systems2018

    • Author(s)
      Kanae Akaiwa, Koichi Kondo
    • Organizer
      Symmetries and Integrability of Differential Equations (SIDE13)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] I型離散ハングリー戸田方程式を用いた固有値および要素を指定した上ヘッセンベルグ行列の構成法2018

    • Author(s)
      赤岩 香苗, 谷口 雄大, 近藤 弘一
    • Organizer
      日本応用数理学会2018年度研究部会連合発表会
    • Related Report
      2017 Research-status Report
  • [Presentation] An Inverse Eigenvalue Problem for Lower Hessenberg Matrices with Prescribed Entries2018

    • Author(s)
      Kanae Akaiwa, Koichi Kondo
    • Organizer
      SIAM Conference on Applied Linear Algebra (SIAM-ALA18)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Solving inverse eigenvalue problems for totally nonnegative matrices with finite steps2017

    • Author(s)
      Kanae Akaiwa
    • Organizer
      International Conference on Matrix Analysis and its Applications (MAT TRIAD2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 離散戸田方程式を用いた要素および固有値が指定された逆固有値問題の解法2017

    • Author(s)
      赤岩 香苗, 谷口 雄大, 近藤 弘一
    • Organizer
      平成29年度 九州大学応用力学研究所 共同利用研究集会 「非線形波動研究の新潮流 ―理論とその応用 ―」
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi