Creation of Highly-Active Catalysts That Convert Methane into Methanol
Project/Area Number |
17K19040
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Nano/Micro science and related fields
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Yuichi Negishi 東京理科大学, 理学部第一部応用化学科, 教授 (20332182)
|
Research Collaborator |
Aoki Marika
Watanabe Seiichiro
|
Project Period (FY) |
2017-06-30 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
|
Keywords | メタン / メタノール / 変換 / 光触媒反応 / 金属クラスター / 助触媒 / 光触媒 / 微細金属クラスター / 合金クラスター / 精密合成 / メタン変換 / 触媒活性 / 高活性化 |
Outline of Final Research Achievements |
Methane exists abundantly around Japan as methane hydrate. As the effective use of such a methane, the conversion of methane into methanol has recently attracted much attention. Photocatalytic reaction is one of the methods which convert methane into methanol without using much energy. However, it is indispensable to improve the photocatalytic activity for their practical use. Our group has attempted to improve the activity of m-WO3 and m-TiO2 photocatalysts, which convert methane into methanol, by loading the ultrafine metal clusters as cocatalyst on the photocatalysts. As a result, we have succeeded in loading ultrafine metal-cluster cocatalysts onto m-WO3 and m-TiO2, and thereby improving their photocatalytic activity. Our study also demonstrated that the kind of metal element suitable for each photocatalyst depends on the kind of the photocatalysts and thereby it is important to select the metal clusters suitable to each photocatalyst for improving its photocatalytic activity.
|
Academic Significance and Societal Importance of the Research Achievements |
再生可能エネルギー社会の実現に向けて,メタンをメタノールへと変換する技術は今後も確実に進歩してゆくと思われる。しかしながら,ブレークスルーの創出には,専門家による継続的な努力に加え,専門分野を超えた学際的な研究が必要になる。申請者らは,金属原子の凝集を原子レベルにて制御するという,いわば,無機ナノ物質に対する極限的なナノテクノロジーを確立している。本研究では,こうした技術を触媒分野に導入することにより,触媒活性を向上させることに成功した。こうした異分野横断研究は,ブレークスルーの創出につながり,夢の触媒材料の実現を大きく加速させるものと期待される。
|
Report
(3 results)
Research Products
(43 results)