Representation Theory of Symmetric Spaces over Finite or Local Fields
Project/Area Number |
18540026
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
KATO Shin-ichi Kyoto University, 大学院・理学研究科, 教授 (90114438)
|
Co-Investigator(Kenkyū-buntansha) |
MATSUKI Toshihiko 京都大学, 大学院・理学研究科, 教授 (20157283)
西山 享 (西山 亨) 京都大学, 大学院・理学研究科, 准教授 (70183085)
高野 啓児 明石工業高等専門学校, 一般科目, 准教授 (40332043)
|
Co-Investigator(Renkei-kenkyūsha) |
NISHIYAMA Kyo 青山学院大学, 理工学部, 教授 (70183085)
TAKANO Keiji 明石工業高等専門学校, 一般科目, 准教授 (40332043)
|
Project Period (FY) |
2006 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,020,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥720,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2008: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2007: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2006: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 対称空間 / 表現論 / 簡約群 / 有限体 / 局所体 / p-進体 / p進体 / distinguished表現 / 誘導表現 / 放物型部分群 |
Research Abstract |
As a natural generalization of the representation theory of reductive groups, we studied representations of symmetric spaces attached to these groups. In the case of groups over p-adic fields, we established criteria for (relatively) cuspidal representations and square-integral representations in the form analogous to the group case. Moreover we proved the symmetric space version of subrepresentation theorem. In the case of groups over finite fields, we studied a construction of cuspidal representations on symmetric spaces by cohomological induction.
|
Report
(6 results)
Research Products
(41 results)