Zero processes of random analytic functions
Project/Area Number |
18540130
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Kyushu University |
Principal Investigator |
SHIRAI Tomoyuki Kyushu University, 大学院・数理学研究院, 教授 (70302932)
|
Project Period (FY) |
2006 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥4,250,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2009: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2008: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2007: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2006: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | 確率論 / フェルミオン点過程 / 大偏差原理 / Ginibre点過程 / ランダム行列 / α行列式 / 零点過程 / 行列式点過程 / ジニブル点過程 / ランダウレヴェル / 全域木 / Ginibreランダム場 |
Research Abstract |
The zeros of a random polynomial (or a random analytic function) form a random point configuration in the complex plane. This is different from the so-called Poisson random configuration which is obtained by uniformly random sampling in the complex plane, and their points are mutually repulsive nature while Poisson random points often form weak clustering. We clarify the difference of these point configurations.
|
Report
(6 results)
Research Products
(26 results)