• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Diagrammatic surface-knot theory

Research Project

Project/Area Number 18740026
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionKobe University

Principal Investigator

SATOH Shin  Kobe University, 大学院理学研究科, 准教授 (90345009)

Project Period (FY) 2006 – 2008
Project Status Completed (Fiscal Year 2008)
Budget Amount *help
¥3,800,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥300,000)
Fiscal Year 2008: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2007: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2006: ¥1,500,000 (Direct Cost: ¥1,500,000)
Keywords曲面結び目 / 射影図 / 3重点数 / シート数 / ブレイド指数 / カンドル / 2次元結び目 / 曲画結び目 / ツイストスパン / スパン結び目
Research Abstract

4次元空間内の曲面(曲面結び目)がどれ程複雑に絡まっているかを定量的に表す指標である、シート数および三重点数に関して、カンドル彩色やカンドル不変量との関係を明らかにした。

Report

(4 results)
  • 2008 Annual Research Report   Final Research Report ( PDF )
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • Research Products

    (18 results)

All 2009 2008 2007 2006

All Journal Article (11 results) (of which Peer Reviewed: 7 results) Presentation (7 results)

  • [Journal Article] Triviality of a 2-knot with one or two sheets2009

    • Author(s)
      S. Satoh
    • Journal Title

      Kyushu J. Math 63

    • Related Report
      2008 Final Research Report
    • Peer Reviewed
  • [Journal Article] Triviality of a 2-knot with one or two sheets2009

    • Author(s)
      Shin Satoh
    • Journal Title

      Kyushu J. Math 63

      Pages: 1-14

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sheet number and quandle-colored 2-knot2009

    • Author(s)
      Shin Satoh
    • Journal Title

      J. Math. Soc. Japan 2

      Pages: 1-28

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A note on the shadow cocycle invariant of a knot with a base point2007

    • Author(s)
      S. Satoh
    • Related Report
      2008 Final Research Report
    • Peer Reviewed
  • [Journal Article] A note on the shadow cocyle invariant of a knot with a base point2007

    • Author(s)
      Shin Satoh
    • Journal Title

      J. Knot Theory Ramifications Vol. 16 No. 7

      Pages: 959-967

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Ribbon concordance of surface-knots via quandle cocycle invariants2006

    • Author(s)
      C. J. Scott, M. Saito, and S. Satoh
    • Journal Title

      J. Aust. Math. Soc 80

    • Related Report
      2008 Final Research Report
    • Peer Reviewed
  • [Journal Article] Ribbon-moves for 2-knots with 1-handles attached and Khovanov-Jacobsson numbers, Proc2006

    • Author(s)
      C. J. Scott, M. Saito, and S. Satoh
    • Journal Title

      Amer. Math. Soc 134

    • Related Report
      2008 Final Research Report
    • Peer Reviewed
  • [Journal Article] Ribbon concordance of surface-knots via quandle cocycle invariants2006

    • Author(s)
      Shin Satoh
    • Journal Title

      J. Aust. Math. Soc. vol. 80, no. 1

      Pages: 131-147

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Ribbon moves for 2-knots with 1-handles attached and Khovanov-Jacobsson numbers2006

    • Author(s)
      Shin Satoh
    • Journal Title

      Proc. Amer. Math. Soc. vol. 134, no. 9

      Pages: 2779-2783

    • Related Report
      2006 Annual Research Report
  • [Journal Article] The braid index is not additive for the connected sum of 2-knots2006

    • Author(s)
      Shin Satoh
    • Journal Title

      Trans. Amer. Math. Soc. vol. 358, no. 12

      Pages: 5425-5439

    • Related Report
      2006 Annual Research Report
  • [Journal Article] A lower bound for the number of Reidemeister moves of type III2006

    • Author(s)
      Shin Satoh
    • Journal Title

      Topology Appl. vol. 153, no. 15

      Pages: 2788-2794

    • Related Report
      2006 Annual Research Report
  • [Presentation] 非自明2次元結び目のシート数は4以上2009

    • Author(s)
      佐藤進
    • Organizer
      日本数学会年会
    • Place of Presentation
      東京大学
    • Year and Date
      2009-03-28
    • Related Report
      2008 Final Research Report
  • [Presentation] 非自明2次元結び目のシート数は4以上2009

    • Author(s)
      佐藤進
    • Organizer
      日本数学会2009年度年会
    • Place of Presentation
      東京大学
    • Year and Date
      2009-03-26
    • Related Report
      2008 Annual Research Report
  • [Presentation] 5彩色可能な結び目の4色で塗られる射影図2008

    • Author(s)
      佐藤進
    • Organizer
      日本数学会2008年度秋季総合分科会
    • Place of Presentation
      東京工業大学
    • Year and Date
      2008-09-24
    • Related Report
      2008 Annual Research Report
  • [Presentation] 三重点数4の3彩色可能な2次元結び目について2008

    • Author(s)
      佐藤進
    • Organizer
      日本数学会トポロジー分科会
    • Place of Presentation
      近畿大学
    • Year and Date
      2008-03-23
    • Related Report
      2007 Annual Research Report
  • [Presentation] 5彩色可能な結び目の4色で塗られる射影図2008

    • Author(s)
      佐藤進
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      東京工業大学
    • Related Report
      2008 Final Research Report
  • [Presentation] 非自明な基本カンドルをもつ2次元結び目のシート数2008

    • Author(s)
      佐藤進
    • Organizer
      日本数学会年会
    • Place of Presentation
      埼玉大学
    • Related Report
      2008 Final Research Report
  • [Presentation] 二次元リボン絡み目の単純射影図について2006

    • Author(s)
      佐藤進
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      大阪市立大学.
    • Related Report
      2008 Final Research Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi