• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves

Research Project

Project/Area Number 18H01128
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionOsaka University

Principal Investigator

Katayama Soichiro  大阪大学, 大学院理学研究科, 教授 (70283942)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥8,450,000 (Direct Cost: ¥6,500,000、Indirect Cost: ¥1,950,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2021: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords非線形波動方程式系 / 非線形シュレディンガー方程式系 / 非線形クライン=ゴルドン方程式系 / 大域解 / 漸近挙動 / 零条件 / 弱零条件 / 非線形波動 / 非線形波動方程式 / 非線形シュレディンガー方程式 / 初期値問題 / クライン・ゴルドン方程式
Outline of Final Research Achievements

We have extended the global existence results for systems of semilinear wave equations with single-speed under some "weak" null conditions to systems of quasi-linear wave equations in two and three space dimensions, and to systems of semilinear wave equations with multiple-speed in two space dimensions. We have also obtaind global existence for systems of semilinear wave equations, and systems of wave and Klein-Gordon equations in three space dimensions under a kind of "weak" null condition with some technical additional assumptions. We examined the asymptotic behavior of global solutions under "weak" null conditions for the above mentioned systems, as well as systems of nonlinear Schroedinger equations.

Academic Significance and Societal Importance of the Research Achievements

いくつかの偏微分方程式系に対して, 従来よりも弱い条件下での大域解の存在定理を得ることができた. また, 大域解の漸近挙動についても研究し, 小さい初期値の場合であっても, 解が自由解に漸近する以外に, エネルギーが増加もしくは減少したり, 特定の成分にエネルギーが集中したりするなど様々な挙動が起こりうることが明らかになった. また従来は解が自由解に漸近するかどうかに興味がもたれていたが, 自由解に漸近する場合にも, 自由解の初期値が元の初期値とはかけ離れたものになる現象が起こり得ることが明らかになった. これらの結果は非線形偏微分方程式の理解に新たな知見を与えている.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (11 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (4 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results) Funded Workshop (2 results)

  • [Journal Article] Remarks on weaker null conditions for two kinds od systems of semilinear wave equations in three space dimensions2023

    • Author(s)
      Minggang CHeng and Soichiro Katayama
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Systems of semilinear wave equations with multiple speeds in two space dimensions and a weaker null condition2022

    • Author(s)
      Minggang Cheng and Soichiro Katayama
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 21 Issue: 9 Pages: 3117-3139

    • DOI

      10.3934/cpaa.2022092

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 非線形波動方程式系に対する零条件とその周辺2021

    • Author(s)
      片山聡一郎
    • Journal Title

      数学

      Volume: 73 Pages: 380-404

    • NAID

      40022736271

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic behavior for a class of derivative nonlinear Schroedinger systems2020

    • Author(s)
      Soichiro Katayama and Daisuke Sakoda
    • Journal Title

      SN Partial Differential Equations and Applications

      Volume: 1 Issue: 3 Pages: 12-12

    • DOI

      10.1007/s42985-020-00012-4

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Global existence and the asymptotic behavior for systems of nonlinear wave equations violating the null condition2020

    • Author(s)
      Soichiro Katayama
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] 臨界次数をもつ非線形波動・シュレディンガー方程式系の大域解の漸近挙動 I, II2020

    • Author(s)
      片山聡一郎
    • Organizer
      PDE Workshop in Miyazaki
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Asymptotic behavior for a class of derivative nonlinear Schroedinger systems2019

    • Author(s)
      片山 聡一郎
    • Organizer
      九州関数方程式論セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 零条件を満たさない準線形波動方程式系の大域解の漸近挙動2019

    • Author(s)
      片山 聡一郎
    • Organizer
      Nonlinear Dispersive Equations in Kumamoto, 2019
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Global existence and the asymptotic behavior for systems of nonlinear wave equations violating the null condition2018

    • Author(s)
      Soichiro Katayama
    • Organizer
      The Role of Metrics in the Theory of Partial Differential Equations
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] 17th Linear and Nonlinear Waves2019

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] The 16th Linear and Nonlinear Waves2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi