• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on global analysis and concentration energy for nonlinear dispersive equations

Research Project

Project/Area Number 18H01129
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKobe University

Principal Investigator

Takaoka Hideo  神戸大学, 理学研究科, 教授 (10322794)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥10,140,000 (Direct Cost: ¥7,800,000、Indirect Cost: ¥2,340,000)
Fiscal Year 2022: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords分散型方程式 / 初期値問題 / 適切性 / 大域挙動 / 無限円柱領域 / 非線形 / 適切生 / 分散型 / 解析学
Outline of Final Research Achievements

I developed the global existence and large time behavior of solutions to nonlinear dispersive equations, especially the nonlinear Schrodinger equation and KdV equation, which describe the wave phenomena produced by the incorporation of nonlinear and dispersive effects. Regarding the nonlinear Schrodinger equation, I showed a phenomenon in which the wave energy of the solution is converted due to the concentration effect of the solutions due to the resonance/non-resonance in the interaction for nonlinear terms. Regarding the KdV equation, by considering the bilinear estimates, I showed the smoothing effect of the KdV equation and the global solvability of the Zakharov-Kuznetsov equation, which is a two-dimensional extension of the KdV equation.

Academic Significance and Societal Importance of the Research Achievements

ハミルトニアンに対応したエネルギー保存空間は,ハミルトニアンが意味をもつ空間として意味があり,その関数空間における解の大域存在,大域挙動に関する研究は多い.また,弱解の一意存在性や正則性に関する解析では,方程式に対してスケール不変である関数空間が重要な役割を果たし,そのような関数空間はエネルギー保存量が有限とは限らない場合が多い.本研究の一つ目の問いは,初期値問題の適切性・非適切性を切り分ける臨界空間はどうかということである.二つ目の問いは,解の大域的な振る舞いをフーリエ空間における波動のエネルギー密度の転換過程で解析できないかということであった.本研究で得られた成果の価値は高いと言える.

Report

(6 results)
  • 2023 Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (12 results)

All 2024 2023 2022 2021 2019 2018 Other

All Journal Article (4 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results) Remarks (1 results) Funded Workshop (2 results)

  • [Journal Article] Global well-posedness for Cauchy problems of Zakharov-Kuznetsov equations on cylindrical spaces2024

    • Author(s)
      Osawa Satoshi、Takaoka Hideo
    • Journal Title

      Electronic Journal of Differential Equations

      Volume: 2024 Issue: 01-?? Pages: 05-05

    • DOI

      10.58997/ejde.2024.05

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] On the growth of Sobolev norm for the cubic NLS on two dimensional product space2024

    • Author(s)
      Takaoka Hideo
    • Journal Title

      Journal of Differential Equations

      Volume: 394 Pages: 296-319

    • DOI

      10.1016/j.jde.2024.03.016

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Remarks on blow-up criteria for the derivative nonlinear Schr?dinger equation under the optimal threshold setting2021

    • Author(s)
      Takaoka Hideo
    • Journal Title

      Journal of Differential Equations

      Volume: 291 Pages: 90-109

    • DOI

      10.1016/j.jde.2021.05.003

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Energy transfer model and large periodic boundary value problem for the quintic NLS2018

    • Author(s)
      Hideo Takaoka
    • Journal Title

      数理解析研究所講究緑

      Volume: 2093 Pages: 94-103

    • Related Report
      2018 Annual Research Report
  • [Presentation] Bilinear Strichartz estimates for dispersive equations on the torus2023

    • Author(s)
      Hideo Takaoka
    • Organizer
      Geometric Analysis in Har- monic Analysis and PDE
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Bilinear Strichartz estimates for the KdV equation2022

    • Author(s)
      Hideo Takaoka
    • Organizer
      Mathematical Analysis of Nonlinear Dis- persive and Wave Equations
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Energy cascades for resonant nonlinear Schrodinger equations2019

    • Author(s)
      高岡秀夫
    • Organizer
      神楽坂解析セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Energy cascades for resonant nonlinear Schrodinger equations2019

    • Author(s)
      Hideo Takaoka
    • Organizer
      Nonlinear Dispersive Equations in Kumamoto, 2019
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Energy cascades for resonant nonlinear Schrodinger equations2019

    • Author(s)
      Hideo Takaoka
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Remarks] 高岡研究室ホームページ

    • URL

      http://www.math.kobe-u.ac.jp/HOME/takaoka/index.htm

    • Related Report
      2018 Annual Research Report
  • [Funded Workshop] 調和解析と非線型偏微分方程式2019

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] Harmonic Analysis and Partial Differential Equations2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi