Project/Area Number |
18H01151
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
|
Research Institution | Osaka University |
Principal Investigator |
Hajime Ishihara 大阪大学, 大学院基礎工学研究科, 教授 (60273611)
|
Co-Investigator(Kenkyū-buntansha) |
芦田 昌明 大阪大学, 基礎工学研究科, 教授 (60240818)
余越 伸彦 大阪公立大学, 工学(系)研究科(研究院), 准教授 (90409681)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2020: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥7,670,000 (Direct Cost: ¥5,900,000、Indirect Cost: ¥1,770,000)
|
Keywords | 超蛍光 / 同期現象 / コヒーレント発光 / 光アンテナ / 上方波長変換 |
Outline of Final Research Achievements |
Theoretically, we have developed a method to calculate the superfluorescence caused by multiple emitters placed in an arbitrary geometrical configuration in a dielectric environment with an arbitrary geometrical structure. This method has revealed that chiral emitters placed in a metallic structure with chiral geometry selectively exhibit superfluorescence due to chiral interactions. This is an example of superluminescent molecules based on superfluorescence, which is the target of this project. In the experiment, we constructed a system to measure the two-photon correlation of luminescence and succeeded in measuring the two-photon correlation of cathodoluminescence in combination with a scanning electron microscope. At present, we have not found a system in which the superradiance is observed, but we expect that superradiance of nanodiamonds containing NV centers will be observed in the future.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究成果の学術的意義は、近年、新光源開発に結びつくとして注目を集める超蛍光を、単に発光体集団を強励起して起こすのみならず、空間的構造によりその性能や特性をデザインできることを示した点にある。また、キラル選択的な超蛍光の存在を明らかにしたことは、近年、研究が盛んになっているキラル相互作用と量子多体相関の関係を初めて見出したことになる点でも重要な成果である。これらの成果は将来の新たな光学的素材の開発につながる可能性がある。さらに、超放射、超蛍光の存在を明らかにする発光の二光子相関を測定する系の構築は、新たな超発光分子の提案に結びつく成果である。
|