Design of complex fluid-solid interfacial energy transport with phase change based on intermolecular energy transport mechanism
Project/Area Number |
18H01382
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
植木 祥高 大阪大学, 工学研究科, 助教 (50731957)
藤原 邦夫 大阪大学, 工学研究科, 助教 (60800852)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,680,000 (Direct Cost: ¥13,600,000、Indirect Cost: ¥4,080,000)
Fiscal Year 2021: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2019: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥10,400,000 (Direct Cost: ¥8,000,000、Indirect Cost: ¥2,400,000)
|
Keywords | 界面 / エネルギー輸送 / 相変化 / 分子動力学 |
Outline of Final Research Achievements |
Both molecular dynamics simulations and experiments were conducted in order to obtain insights for the precise design of complex fluid-solid interfacial heat transport with phase changes. By the visualization method of high spatiotemporal decomposition energy flow based on the intermolecular energy transport mechanism proposed in this study, we specifically clarified where and at what stage in the region of the interface with fine local structure attributed to the improvement or deterioration of the fluid-solid interface heat transport depending on the surface characteristics in the cases of the various energy transport phenomena such as steady heat conduction, condensation, solidification, evaporation, and boiling.
|
Academic Significance and Societal Importance of the Research Achievements |
流体-固体界面における熱輸送現象は,エネルギー機器の動作の基礎であり,持続可能な社会の実現に不可欠な省エネルギー技術に直結する重要課題であるが,相変化を伴う固体壁面近傍の熱輸送現象は未解明な部分が多く,その制御は一般に困難である.本研究で提案した分子間エネルギー輸送機構に基づいた高時空間分解したエネルギー輸送の可視化手法により,相変化が生じる複雑な現象においても界面エネルギー輸送が向上・低下する局所領域と時刻を特定できるようになるため,その改善のための方法を原理的に,かつ,具体的に検討することが可能となる.
|
Report
(5 results)
Research Products
(40 results)