• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deep Learning Processor for Pipelined Backpropagation

Research Project

Project/Area Number 18H01500
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 21060:Electron device and electronic equipment-related
Research InstitutionKobe University

Principal Investigator

KAWAGUCHI Hiroshi  神戸大学, 科学技術イノベーション研究科, 教授 (00361642)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥16,900,000 (Direct Cost: ¥13,000,000、Indirect Cost: ¥3,900,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥11,570,000 (Direct Cost: ¥8,900,000、Indirect Cost: ¥2,670,000)
Fiscal Year 2018: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Keywords深層学習 / 低消費電力プロセッサ / SRAM / ニューラルネットワーク / ディープラーニング / ディープラーニングプロセッサ
Outline of Final Research Achievements

Dual-port SRAM for a deep learning processor was implemented in a 28nm FD-SOI process. It was confirmed that the energy consumption required for the read operation of image data can be reduced by 14.76%.
This technology was expanded in a 20-transistor ultra-multiport SRAM for codebook quantization in a deep learning processor; a prototype 4k-bit codebook that functions as a lookup table to convert 8 bits to 16 bits was fabricated in a 40nm process. The codebook reduced energy by 20% and area by 26% in the motif processor, NVIDIA NVDLA.

Academic Significance and Societal Importance of the Research Achievements

IoTデバイスの低エネルギ画像認識の需要は機械学習により様々な分野で拡大している。カメラの高解像度化に反して、低エネルギ処理とリアルタイム性維持の両立が求められている。深層学習プロセッサは大量のパラメータと入出力を扱うため、大容量の内部SRAMが必要となり、シリコン面積の50%以上を占め、エネルギは外部DRAM帯域に支配される。精度を落とさずにメモリ帯域を削減する方法として量子化がある。コードブック方式は任意の非線形関数を表現でき、線形量子化よりも精度劣化を抑えることができる。この用途のために深層学習プロセッサのコードブック量子化用20トランジスタ超多ポートSRAMを設計、試作した。

Report

(4 results)
  • 2021 Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (12 results)

All 2021 2020 2019 2018 Other

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results) Remarks (1 results) Patent(Industrial Property Rights) (1 results)

  • [Journal Article] Rapid Method Using Deep Learning with Multi-focus Microphotographs to Measure Submicrometric Structures and Its Evaluation2021

    • Author(s)
      R. Narukage, G. Okada, and H. Kawaguchi
    • Journal Title

      JLPS Journal of Laser Micro / Nanoengineering (JLMN)

      Volume: 16 Pages: 150-154

    • DOI

      10.2961/jlmn.2021.02.3001

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A 28-nm FD-SOI 8T Dual-Port SRAM for Low-Energy Image Processor With Selective Sourceline Drive Scheme2019

    • Author(s)
      H. Mori, T. Nakagawa, Y. Kitahara, Y. Kawamoto, K. Takagi, S. Yoshimoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto
    • Journal Title

      IEEE Transactions on Circuits and Systems I: Regular Papers

      Volume: 66 Issue: 4 Pages: 1442-1453

    • DOI

      10.1109/tcsi.2018.2885536

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A 28-nm FD-SOI 8T Dual-Port SRAM for Low-Energy Image Processor with Selective Sourceline Drive Scheme2019

    • Author(s)
      H. Mori, T. Nakagawa, Y. Kitahara, Y. Kawamoto, K. Takagi, S. Yoshimoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto 97.H. Mori, T. Nakagawa, Y. Kitahara, Y. Kawamoto, K. Takagi, S. Yoshimoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto
    • Journal Title

      IEEE Transactions on Circuits and Systems I

      Volume: 印刷中

    • NAID

      120007026371

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] Rapid method using deep learning with multi-focus microphotographs to measure submicrometric structures2020

    • Author(s)
      R. Narukage, G. Okada, and H. Kawaguchi
    • Organizer
      DGM/JLPS International Symposium on Laser Precision Microfabrication (LPM)
    • Related Report
      2020 Annual Research Report 2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] R. Kawamoto, M. Taichi, M. Kabuto, D. Watanabe, S. Izumi, M. Yoshimoto, and H. Kawaguchi, "A 1.15-TOPS 6.57-TOPS/W DNN Processor for Multi-Scale Object Detection2020

    • Author(s)
      R. Kawamoto, M. Taichi, M. Kabuto, D. Watanabe, S. Izumi, M. Yoshimoto, and H. Kawaguchi
    • Organizer
      IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] テーブル参照を用いたTernary圧縮・伸長アルゴリズムの検討2019

    • Author(s)
      大原 遼太郎、川口 博
    • Organizer
      情報論的学習理論ワークショップ(IBIS)
    • Related Report
      2019 Annual Research Report
  • [Presentation] 顕微鏡による焦点画像群を用いたレーザ加工溝形状の高速推定手法2019

    • Author(s)
      成影 力、岡田 穣治、川口 博
    • Organizer
      レーザ加工学会講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] メモリ容量と帯域幅削減のための分散深層学習ハードウェア2019

    • Author(s)
      川口 博
    • Organizer
      miniCANDARシンポジウム
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 分散深部学習におけるメモリと帯域幅削減のためのレイヤーブロックワイズパイプライン2018

    • Author(s)
      森陽紀、陽川哲也、和泉慎太郎、吉本雅彦、川口博、井上敦樹
    • Organizer
      LSIとシステムのワークショップ
    • Related Report
      2018 Annual Research Report
  • [Presentation] 28-nm FD-SOI Dual-Port SRAM with MSB-Based Inversion Logic for Low-Power Deep Learning2018

    • Author(s)
      H. Mori, S. Izumi, H. Kawaguchi, and M. Yoshimoto
    • Organizer
      IEEE International Conference on Electronics, Circuits, and Systems (ICECS)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Remarks] 神戸大学大学院科学技術イノベーション研究科アーキテクチャ研究室

    • URL

      https://www28.cs.kobe-u.ac.jp/

    • Related Report
      2018 Annual Research Report
  • [Patent(Industrial Property Rights)] 顕微鏡による焦点画像群を用いた形状計測方法及び装置2019

    • Inventor(s)
      2019
    • Industrial Property Rights Holder
      2019
    • Industrial Property Rights Type
      特許
    • Industrial Property Number
      2019-214798
    • Filing Date
      2019
    • Related Report
      2019 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi