Development of efficient organic long persistent luminescence system based on charge trapping mechanism
Project/Area Number |
18H02049
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35030:Organic functional materials-related
|
Research Institution | Okinawa Institute of Science and Technology Graduate University (2019-2020) Kyushu University (2018) |
Principal Investigator |
KABE RYOTA 沖縄科学技術大学院大学, 有機光エレクトロニクスユニット, 准教授 (00726490)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥18,330,000 (Direct Cost: ¥14,100,000、Indirect Cost: ¥4,230,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
|
Keywords | 蓄光 / 電荷分離 / フォトルミネッセンス / エキシトン / 有機半導体 / 有機蓄光 / 電荷移動 / 有機EL / 電荷再結合 / 電子移動 / 励起状態 |
Outline of Final Research Achievements |
Organic long-persistent luminescence (OLPL) systems, consisting of organic electron donors and acceptors, do not require rare metals and can form transparent and flexible films by solution processes. However, the emission efficiency of OLPL is less than 1/100 of that of inorganic materials. In this project, we elucidated the detailed emission mechanism of OLPL systems and clarified the important factors for the material selection of the electron donors and the acceptors. We also clarified that the OLPL performances are independent to the film fabrication methods. We developed a polymer based OLPL system which have good flexibility and transparency. The OLPL performance was improved six times higher than that of previous system by incorporating both energy transfer mechanism and charge trapping mechanism.
|
Academic Significance and Societal Importance of the Research Achievements |
有機蓄光はレアメタルを含まず、柔軟で塗布可能な蓄光材料として注目を集めている。本課題により、このような蓄光現象は電子ドナーとアクセプターの混合物において一般的に生じることが確認された。また、電荷トラップ機構とエネルギー移動機構により効率は6倍に向上した。さらなる材料の最適化により、実用レベルの有機蓄光実現が期待される。 また、有機蓄光システムで生じる安定な電荷分離状態の解明、多くの有機半導体デバイスで重要なエキシトンを解明する上でも役立つことが期待される。
|
Report
(4 results)
Research Products
(33 results)