Objects measurements for degraded underwater scenes
Project/Area Number |
18H03263
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 61010:Perceptual information processing-related
|
Research Institution | Shiga University (2021) Kyoto University |
Principal Investigator |
Iiyama Masaaki 滋賀大学, データサイエンス学部, 教授 (70362415)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2021: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
|
Keywords | 散乱現象 / 形状計測 / 画像復元 / 深層学習 / コンピュータビジョン / 3次元計測 / 散乱 / 3次元計測 |
Outline of Final Research Achievements |
In our project, we developed methods for measuring 3D scene in highly-degraded scene due to light scattering, especially scenes that are hard to observe objects due to heavy scattering. We focused on three major methods for shape measurement (photometric stereo, ToF, multi-view stereo) and developed methods that estimate both scattering components and scene shape/depth. We also modeled light transport model under light scattering. We developed and evaluated a Deep-learning-based method for hazy scene and confirmed the effectiveness of our method.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,光の散乱によって肉眼ではよく分からない程度にまで劣化した環境でも被写体の形状や被写体までの距離を計測する技術を開発した.本プロジェクトで開発した技術は将来的には水中ロボットでの利用や災害時のレスキューロボットなどに応用できる技術であり,水中での安価かつ安定した計測技術の確立に向けて重要な一歩となった.
|
Report
(4 results)
Research Products
(9 results)