• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Study of Recurrent Education Support Methods Based on Online Learning Data

Research Project

Project/Area Number 18K02927
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 09070:Educational technology-related
Research InstitutionNational Institute of Informatics

Principal Investigator

Furukawa Masako  国立情報学研究所, 情報社会相関研究系, 助教 (20617287)

Co-Investigator(Kenkyū-buntansha) 山地 一禎  国立情報学研究所, コンテンツ科学研究系, 教授 (50373379)
畑 耕治郎  大手前大学, 現代社会学部, 教授 (50460986)
Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywordsオンライン学習 / リカレント教育 / 学習履歴データ / ラーニングアナリティクス / ラーニング・アナリティクス
Outline of Final Research Achievements

This study aims to analyze the differences in learning behavior between students who have completed and withdrawn from the online learning history data accumulated at correspondence universities, and to link the findings on learning behavior patterns of students who have completed to effective learning support for other students, mainly for working students. The purpose of this study is to analyze the differences in learning behavior between students who have completed and those who have withdrawn from the university, and to link the findings on the learning behavior patterns of completed students to effective learning support for other students. Specifically, we developed a system to analyze and visualize learning history data, and extracted the characteristics of learning behavior patterns of all courses taken from the time of entrance to graduation, as well as the characteristics of learning behavior patterns of students who completed and withdrew from the same courses.

Academic Significance and Societal Importance of the Research Achievements

通信制大学においては、通学制に比べると修了率が低いという問題点があり、どのように遠隔学習を継続させるかについて課題が残っている。オンライン学習履歴データを蓄積している通信制大学におけるリカレント教育の支援システムを開発し、オンライン学習履歴データの解析を行うことによって、学生支援を効果的に行うことや、学習支援においては予め効率良い学習戦略をアドバイスできるとともに、様々な学習行動パタンに基づいて適切なアドバイスができることが期待できる。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2023 2020 2018

All Presentation (3 results)

  • [Presentation] ラーニングアナリティクス共通環境利用支援のための情報サイトの構築2023

    • Author(s)
      古川 雅子,増井 誠生,長岡 千香子,森本 容介,山地 一禎
    • Organizer
      情報処理学会 教育学習支援情報システム(CLE)研究会 第39回研究発表会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 通信制大学におけるオンライン学習履歴データの特徴と解析基盤の構築2020

    • Author(s)
      古川 雅子,畑 耕治郎,山地 一禎
    • Organizer
      情報処理学会 教育学習支援情報システム(CLE)研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Development and Analysis of Online RDM Training Course2018

    • Author(s)
      Masako Furukawa, Koichi Ojiro, Kazutsuna Yamaji
    • Organizer
      2018 IEEE 7th Global Conference on Consumer Electronics (GCCE 2018)
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi