• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

a generalization of the notion of a module for a vertex algebra

Research Project

Project/Area Number 18K03198
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionHokkaido University

Principal Investigator

tanabe kenichiro  北海道大学, 理学研究院, 准教授 (10334038)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords頂点代数 / 代数学
Outline of Final Research Achievements

The vertex algebra associated to a non-degenerate even lattice, and its invariant subalgebra, plays an important role in constructing vertex algebras with good properties. If the lattice is positive definite, the modules for a vertex algebra are well studied, but if not, we need to deal with a broader class of representations called weak modules. The author classified the irreducible weak modules for an invariant subalgebra of the vertex algebra associated to a non-degenerate even lattice. The author also showed that every weak module for the same vertex algera is completely reducible.

Academic Significance and Societal Importance of the Research Achievements

頂点代数上の弱加群は,格子に付随する頂点代数の表現に現れる自然な対象である.ムーンシャイン頂点作用素代数の性質の解明に重要な役割を果たすと考えているが,通常の加群における手法が全く使えなくなるため,弱加群を研究することはこれまで極めて困難であった.筆者は頂点代数の特性を活かした,表現を調べる新しい手法を導入し,不変部分代数の表現論を進展させた.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2021 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (5 results) (of which Invited: 2 results)

  • [Journal Article] The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 1)2021

    • Author(s)
      Kenichiro Tanabe
    • Journal Title

      Journal of Algebra

      Volume: 575 Pages: 31-66

    • DOI

      10.1016/j.jalgebra.2021.01.038

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Simple Weak Modules for Some Subalgebras of the Heisenberg Vertex Algebra and Whittaker Vectors2019

    • Author(s)
      Tanabe Kenichiro
    • Journal Title

      Algebras and Representation Theory

      Volume: 印刷中 Issue: 1 Pages: 53-66

    • DOI

      10.1007/s10468-018-9837-x

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 非退化偶格子に付随する頂点代数の不変部分代数の表現2021

    • Author(s)
      田邊顕一朗
    • Organizer
      日本数学会2020年度年会(代数学分科会特別講演) (ただし,covid-19により年会は中止)
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order $2$2020

    • Author(s)
      Kenichiro Tanabe
    • Organizer
      Vertex Operator Algebras and Related Topics
    • Related Report
      2019 Research-status Report
  • [Presentation] 非退化偶格子に付随する頂点代数の不変部分代数の表現2020

    • Author(s)
      Kenichiro Tanabe
    • Organizer
      日本数学会 2020年度年会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 非退化偶格子に付随する頂点代数の不変部分代数の既約弱加群2019

    • Author(s)
      Kenichiro Tanabe
    • Organizer
      第36 回代数的組合せ論シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] 格子に付随する頂点代数の不変部分代数の表現について2018

    • Author(s)
      田邊顕一朗
    • Organizer
      第57回愛媛大学代数セミナー
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi