• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on finite dimensional algebras and combinatorial objects that appear in Lie theory

Research Project

Project/Area Number 18K03212
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOsaka University

Principal Investigator

ARIKI SUSUMU  大阪大学, 情報科学研究科, 教授 (40212641)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsヘッケ代数 / 順表現型 / 多項式増大順表現型 / タウ傾理論 / 暴表現型 / シューア加群 / Hecke algebra / tau-tilting finite / 古典型ヘッケ代数 / Schur positive多項式 / 柏原クリスタル / tame block / Kashiwara crystal / Tokuyama formula
Outline of Final Research Achievements

In the previous research project 2015-2017, I determined Morita classes of blocks of Hecke algebras of classical type which are representation-finite. In the proof, classification of symmetric cellular algebras of finite representation type played an important role. Thus, it is natural to consider classification of symmetric cellular algebras of tame representation type. We have succeeded in classifying those which are tame of polynomial growth. After that, I have utilized tilting mutation to obtain the classification of Morita classes of tame blocks of Hecke algebras of classical type under the assumption that the characteristic of the base algebraically closed field is not equal to two.

Academic Significance and Societal Importance of the Research Achievements

現代代数学において種々の体上の簡約群の表現論は保形形式その他の広い分野に関係する中心的な研究課題のひとつである。簡約群の表現論をより簡単な代数の表現論に帰着して研究する試みは昔から行われてきたが、ヘッケ代数はその文脈でよく使われる基本的な代数である。近年は簡約代数群に対しても正標数の体上の表現論が研究され始めており、ヘッケ代数のモジュラー表現論を先行して開発しておくことは学術上極めて有意義であると思われる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (11 results)

All 2021 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (8 results) (of which Int'l Joint Research: 8 results,  Invited: 8 results)

  • [Journal Article] Tame block algebras of Hecke algebras of classical type2021

    • Author(s)
      Susumu Ariki
    • Journal Title

      J. Aust. Math. Soc.

      Volume: 111 Issue: 2 Pages: 179-201

    • DOI

      10.1017/s1446788719000326

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On cyclotomic quiver Hecke algebras of affine type2021

    • Author(s)
      S. Ariki
    • Journal Title

      Ring Theory 2019

      Volume: none Pages: 3-22

    • DOI

      10.1142/9789811230295_0001

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Self-injective Cellular Algebras Whose Representation Type are Tame of Polynomial Growth2019

    • Author(s)
      Susumu Ariki, Ryoichi Kase, Kengo Miyamoto, Kentaro Wada
    • Journal Title

      Algebras and Representation Theory

      Volume: 印刷中 Issue: 3 Pages: 833-871

    • DOI

      10.1007/s10468-019-09872-w

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Presentation] Representation type and decomposition numbers of Hecke algebras2019

    • Author(s)
      Susumu Ariki
    • Organizer
      International Conference on Representation Theory VIII
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On cyclotomic quiver Hecke algebras of affine type2019

    • Author(s)
      Susumu Ariki
    • Organizer
      The 8th China-Japan-Korea International Symposium on Ring Theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tame blocks of Hecke algebras2019

    • Author(s)
      Susumu Ariki
    • Organizer
      Algebraic Representation Theory and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Modular Representation Theory of Hecke algebras2019

    • Author(s)
      Susumu Ariki
    • Organizer
      Representation Theory of Algebraic Groups and Quantum Groups
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The RSK correspondence and its variants in the light of crystal graph theory2019

    • Author(s)
      Susumu Ariki
    • Organizer
      MPI-INF and MPI-MiS joint workshop on Theoretical Computer Science and Algebraic Geometry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Block algebras of Hecke algebras of classical type and the cellularity2019

    • Author(s)
      Susumu Ariki
    • Organizer
      Representation theory of reductive Lie groups and algebras
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Tame block algebras of Hecke algebras of classical type2018

    • Author(s)
      Susumu Ariki
    • Organizer
      The international meeting of the C.M.S. and the A.M.S. Special session on Quantum Algebras and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Lifting Schur positive functions to Kashiwara crystals2018

    • Author(s)
      Susumu Ariki
    • Organizer
      The first SWAN workshop
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi