• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of congruences and p-adic properties for modular forms with several variables

Research Project

Project/Area Number 18K03229
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionFukuoka Institute of Technology

Principal Investigator

Kikuta Toshiyuki  福岡工業大学, 情報工学部, 助教 (60569953)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsp進モジュラー形式 / Siegelモジュラー形式 / 法p特異モジュラー形式 / テータ級数 / テータ作用素 / 2次形式 / 基底 / Hermiteモジュラー形式 / 合同 / 特異モジュラー形式 / J. Sturm / 次数付き環 / Fourier係数 / Sturm型の境界 / Siegelモジュラ―形式 / Eisenstein級数
Outline of Final Research Achievements

1. An evaluation formula for the weight (filtration) of an element of the image ImΘ of the mod p power Θ-operator was studied and results were obtained in some special cases. 2. In a fairly general case, we showed that all mod p singular modular forms are represented by linear combinations of theta series. In the cases of some levels and some singular ranks, the levels of the corresponding theta series were specified. 3. In the case where such as the base field and weights are special, the concrete structure of the graded algebra over the ring of rational integers formed by the Hermite modular forms was determined. 4. There are two papers that were in the process of submission to journals before this research period, but were published in journals during this research period.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は、Serreによって展開された(1変数の)p進モジュラー形式の理論が、どの程度平行して多変数化されるか、1変数と多変数の場合の違いを一部明らかにする。特に、多変数の場合にのみ成り立つ特有の事象の追究により、新たな理論の形成を担う。これにより、多変数のp進モジュラー形式の理論の発展に寄与する。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2019 Other

All Int'l Joint Research (1 results) Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Invited: 3 results) Remarks (6 results)

  • [Int'l Joint Research] University of Mannheim(ドイツ)

    • Related Report
      2021 Annual Research Report
  • [Journal Article] A ring of symmetric Hermitian modular forms of degree 2 with integral Fourier coefficients2019

    • Author(s)
      Toshiytuki Kikuta
    • Journal Title

      Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

      Volume: 89 Issue: 2 Pages: 209-223

    • DOI

      10.1007/s12188-019-00205-8

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Sturm bounds for Siegel modular forms of degree 2 and odd weights2019

    • Author(s)
      Toshiyuki Kikuta, Sho Takemori
    • Journal Title

      Mathematische Zeitschrift

      Volume: 291 Issue: 3-4 Pages: 1419-1434

    • DOI

      10.1007/s00209-018-2213-z

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Presentation] A ring of symmetric Hermitian modular forms over Z2019

    • Author(s)
      菊田俊幸
    • Organizer
      マンハイム大学数学講演会 (マンハイム大学)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] A ring of symmetric Hermitian modular forms over Z2019

    • Author(s)
      菊田俊幸
    • Organizer
      Days of Modular Forms (フーリエ研究所)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 整数のFourier係数をもつHermiteモジュラー形式環の構造について2019

    • Author(s)
      菊田俊幸
    • Organizer
      九大代数学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Remarks] 福岡工業大学 研究者情報

    • URL

      https://www.fit.ac.jp/research/search/profile/id/229

    • Related Report
      2021 Annual Research Report
  • [Remarks] 菊田俊幸のホームページ

    • URL

      http://kikuta.yohamanzokuja.com/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] FIT 福岡工業大学 研究者情報

    • URL

      https://www.fit.ac.jp/research/search/profile/id/229

    • Related Report
      2020 Research-status Report
  • [Remarks] FIT 福岡工業大学 研究者情報

    • URL

      https://www.fit.ac.jp/research/search/profile/id/229

    • Related Report
      2019 Research-status Report
  • [Remarks] FIT 福岡工業大学 研究者情報

    • URL

      http://www.fit.ac.jp/research/search/profile/id/229

    • Related Report
      2018 Research-status Report
  • [Remarks] 菊田俊幸のホームページ

    • URL

      http://kikuta.yohamanzokuja.com

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi