• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on moduli spaces of algebraic sheaves

Research Project

Project/Area Number 18K03246
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKumamoto University

Principal Investigator

Abe Takeshi  熊本大学, 大学院先端科学研究部(理), 准教授 (90362409)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsベクトル束 / モジュライ / 代数的ベクトル束 / 等質空間 / 小林双極性 / 有理曲線 / 双曲性 / 代数的層 / モジュライ空間
Outline of Final Research Achievements

It is fundamental to study line bundles in the study of algebraic varieties. As a higher rank version, vector bundles are also basic object to study. There is a phenomena called strange duality which concerns generalized theta divisors on the moduli spaces of vector bundles. In this research, we obtain the following result : a partial result on the strange duality of holomorphic triples on a curve; a representation of height zero moduli spaces of algebraic sheaves on a del Pezzo surface of degree 5 or 6 as a quiver representation; a result on subvarieties of geometric genus zero in a general hypersuface in a projective space.

Academic Significance and Societal Importance of the Research Achievements

数学の研究では「双対性」(「そうついせい」と読む)が様々な状況で登場する.双対性とは,大体次のようなものである.今Aという対象があり,それを鏡に映すと,Aとそっくりな,しかしAとは異なるBという像が見える.鏡の中の世界から見ると,Bという対象の像としてAが見えるであろう.双対性とはこの例のような二つの対象AとBの組の間の関係性のことである.数学の研究において様々な双対性の発見は数学的対象の間に明快な関係を与えるという意味でとても意義深いことである本研究で取り組んだstrange dualityもそのような双対性の一つである.

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2023 2021 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] Subvarieties of geometric genus zero of a very general hypersurface2023

    • Author(s)
      Takeshi Abe
    • Journal Title

      Algebraic Geometry

      Volume: 10 Pages: 41-86

    • DOI

      10.14231/ag-2023-002

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Semistable sheaves with symmetric c1 on Del Pezzo surfaces of degree 5 and 62021

    • Author(s)
      Takeshi Abe
    • Journal Title

      European Journal of Mathematics

      Volume: 7 Issue: 2 Pages: 526-556

    • DOI

      10.1007/s40879-020-00434-9

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A note on strange duality for holomorphic triples on a projective line2019

    • Author(s)
      Takeshi Abe
    • Journal Title

      manuscripta mathematica

      Volume: 159 Issue: 3-4 Pages: 363-377

    • DOI

      10.1007/s00229-018-1083-3

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] A note on strange duality for holomorphic triples on a projective line2019

    • Author(s)
      Takeshi Abe
    • Organizer
      Japanese-European Symposium on Symplectic Varieties and Moduli Spaces
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A note on strange duality for holomorphic triples on a projective line2019

    • Author(s)
      阿部 健
    • Organizer
      Algebraic Geometry and Moduli Theory
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Semistable sheaves with symmetric $c_{1}$ on a quadric surface2018

    • Author(s)
      阿部 健
    • Organizer
      ベクトル束の分裂・構成・安定性とその応用
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi