• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theoretical foundations on wild character varieties

Research Project

Project/Area Number 18K03256
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionTokyo University of Science

Principal Investigator

Yamakawa Daisuke  東京理科大学, 理学部第一部数学科, 准教授 (20595847)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords野性的指標多様体 / モノドロミー・ストークスデータ / 安定性 / 多重安定性 / ストークス表現 / 線形常微分方程式 / 有理型接続 / 微分ガロア群 / クイバー概型 / モノドロミー保存変形 / 量子化 / ストークス局所系 / 次数付き局所系 / 多重安定 / 線形簡約 / 正準量子化 / 量子スペクトル曲線法 / マニン行列 / ラプラス変換 / 合流 / モジュライ空間 / カッツ・ムーディ代数 / ハミルトニアン / マンフォード安定性 / リーマン・ヒルベルト・バーコフ対応 / 特異点解消
Outline of Final Research Achievements

We proved that a monodromy/Stokes datum on a compact Riemann surface is stable if and only if the corresponding Stokes representation is irreducible, while it is polystable if and only if the differential Galois group of the corresponding meromorphic connection is linearly reductive.
Also, in the case where the base space is the Riemann sphere and the number of singularities is equal to one, we described the dimensions of wild character varieties (moduli spaces of monodromy/Stokes data) in terms of some quadratic forms, and found that many important examples of such quadratic forms relate to Kac-Moody Lie algebras.

Academic Significance and Societal Importance of the Research Achievements

本研究によって、モノドロミー・ストークスデータやそのモジュライ空間である野性的指標多様体について理解が進み、複素領域上の線形常微分方程式の理論だけでなく、ゲージ理論、表現論、可積分系等の関連分野に貢献することができた。また「研究成果の概要」欄で述べた安定性・多重安定性に関する研究成果を得る過程において、幾何学的不変式論における既知の結果の拡張も行っており、これによって同分野の発展にも寄与したと考えている。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (15 results)

All 2024 2023 2022 2020 2019 Other

All Int'l Joint Research (4 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results) Remarks (3 results)

  • [Int'l Joint Research] Universite Paris Cite(フランス)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2022 Research-status Report
  • [Int'l Joint Research] Institut de Mathematiques de Jussieu(フランス)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Institut de Mathematiques de Jussieu(フランス)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Diagrams for nonabelian Hodge spaces on the affine line2020

    • Author(s)
      Boalch Philip、Yamakawa Daisuke
    • Journal Title

      Comptes Rendus. Mathematique

      Volume: 358 Issue: 1 Pages: 59-65

    • DOI

      10.5802/crmath.11

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Fundamental two-forms for isomonodromic deformations2019

    • Author(s)
      Yamakawa Daisuke
    • Journal Title

      Journal of Integrable Systems

      Volume: 4 Issue: 1 Pages: 1-35

    • DOI

      10.1093/integr/xyz009

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Symmetries of quiver schemes2024

    • Author(s)
      山川 大亮
    • Organizer
      Web-seminar on Painleve Equations and related topics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] クイバースキーム2024

    • Author(s)
      山川 大亮
    • Organizer
      パンルヴェ方程式の幾何学とその周辺
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Stokes local systems and wild character varieties2023

    • Author(s)
      Daisuke Yamakawa
    • Organizer
      Gauge Theory, Moduli Spaces and Representation Theory, Kyoto 2023
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] モノドロミー保存変形の幾何学と対称性2022

    • Author(s)
      山川 大亮
    • Organizer
      日本数学会2022年度秋季総合分科会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] ストークス・モノドロミーデータの安定性と微分ガロア群2020

    • Author(s)
      山川 大亮
    • Organizer
      微分方程式の総合的研究
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] リーマン・ヒルベルト・バーコフ対応と野性的指標多様体2019

    • Author(s)
      山川大亮
    • Organizer
      早稲田大学数学若手異分野交流会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Remarks] 山川 大亮(やまかわ だいすけ)のホームページ

    • URL

      https://www.rs.tus.ac.jp/yamakawa/

    • Related Report
      2021 Research-status Report 2020 Research-status Report
  • [Remarks] https://www.rs.tus.ac.jp/yamakawa/

    • Related Report
      2019 Research-status Report
  • [Remarks] 東京理科大学 研究者情報データベース

    • URL

      https://www.tus.ac.jp/ridai/doc/ji/RIJIA01.php

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi