• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric analysis for unitary transition operators

Research Project

Project/Area Number 18K03267
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionTohoku University

Principal Investigator

Tate Tatsuya  東北大学, 理学研究科, 教授 (00317299)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsユニタリ推移作用素 / 量子ウォーク / 結晶格子 / 局在 / 一般固有関数展開 / 固有関数展開 / QWフーリエ変換 / 正値行列値測度 / 半古典極限 / 弱極限 / 一般フーリエ展開 / 転送行列 / 正規分布 / 1次元量子ウォーク / 極限分布 / 初期状態 / 周期的ユニタリ推移作用素 / 半古典解析 / 漸近挙動 / 特異連続スペクトル
Outline of Final Research Achievements

Unitary transition operators are unitary operators defined on graphs with certain finite propagation property. Quantum walks are examples of unitary transition operators. But recently the word "quantum walk" means unitary transition operators in the above sense. In the first stage of the research, the aim was to study problems on geometrical deduction for weak limits of quantum walks on integer lattices, on semiclassical analysis and on quantum walks with singular continuous spectrum. Although the situation on these problems is still far from resolved, the researches in this program have made a certain contribution, in particular to the last problem, because the generalized eigenfunction expansion formula has been obtained. Many of previous researches on quantum walks were made for each individual models in case-by-case. But it will be expected that the generalized eigenfunction expansion formula will give a unified method to handle 1-dimensional quantum walks systematically.

Academic Significance and Societal Importance of the Research Achievements

量子ウォークは量子論的な事象のコンピュータ・シミュレーションにしばしば応用される。したがって量子ウォークを定義するコイン行列と量子ウォークの挙動との理論上の関連を調べることは,応用に対する理論的な裏付けを与える重要な研究である。本研究においては,ある程度一般な1次元量子ウォークに対して,量子ウォークを簡単な作用素に変換するフーリエ変換の類似物,つまり一般固有関数展開定理,をコイン行列の言葉で書き下すことに成功した。さらにその計算に必要なレゾルベントに関する性質も導くことができた。今後は,これを用いてコイン行列と力学的挙動との関連を理論的かつ定量的に調べることが可能になるものと期待している。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2021 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 2 results)

  • [Journal Article] An eigenfunction expansion formula for one-dimensional two-state quantum walks2022

    • Author(s)
      Tate Tatsuya
    • Journal Title

      Annals of Functional Analysis

      Volume: 13 Issue: 4

    • DOI

      10.1007/s43034-022-00210-8

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Eigenvalues, absolute continuity and localizations for periodic unitary transition operators2019

    • Author(s)
      Tate Tatsuya
    • Journal Title

      Infinite Dimensional Analysis, Quantum Probability and Related Topics

      Volume: 22 Issue: 02 Pages: 1950011-1950011

    • DOI

      10.1142/s0219025719500115

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Eigenvalues of the Laplacian on the Goldberg-Coxeter Constructions for 3- and 4-valent Graphs2019

    • Author(s)
      Omori Toshiaki、Naito Hisashi、Tate Tatsuya
    • Journal Title

      The Electronic Journal of Combinatorics

      Volume: 26 Issue: 3

    • DOI

      10.37236/8481

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Generalized eigenfunction expansion formula for one-dimensional two-state quantum walks2023

    • Author(s)
      楯 辰哉
    • Organizer
      研究集会「量子ウォークにおける長時間挙動の研究」
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Spectral properties of magnetic Laplacian on a catenoid2021

    • Author(s)
      Tatsuya Tate
    • Organizer
      International conference on Discrete Geometric Analysis for Materials Design
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Eigenvalues of the Laplacian on the Goldberg-Coxeter constructions for 3- and 4-valent graphs2019

    • Author(s)
      Tatsuya Tate
    • Organizer
      Materials Research Meeting 2019, Symposium B-3: Mathematical Materials Science
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi