• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The differential geometry of complex submanifolds of a quaternionic manifold

Research Project

Project/Area Number 18K03271
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionOchanomizu University

Principal Investigator

Tsukada Kazumi  お茶の水女子大学, 無し, 名誉教授 (30163760)

Co-Investigator(Kenkyū-buntansha) 江尻 典雄  名城大学, 理工学部, 教授 (80145656)
Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords四元数ケーラー多様体 / 全複素部分多様体 / 結合的グラスマン多様体 / 実グラスマン多様体 / 6次元球面 / ツイスター空間 / ルジャンドル部分多様体 / 複素Lie 球面幾何学 / Lie 球面幾何学の複素化 / Lie 曲率 / 四元数双曲空間 / Lie超球面 / デュパンサイクライド / 複素球面 / 八元数 / 双ファイブレーション / ラグランジュ部分多様体 / 調和写像 / 四元数多様体 / 横断的複素部分多様体 / 複素部分多様体 / ツイスター理論 / 四元数射影空間 / グラスマン多様体
Outline of Final Research Achievements

We studied the associative Grassmann manifold and the real Grassmann manifold Gr_4(R^n) of all four-dimensional subspaces in the real vector space R^n, which are quaternionic Kaehler symmetric spaces and obtained the following results. We constructed a double fibration to a six-dimensional sphere and an associative Grassmann manifold and investigated interesting relationships between the submanifolds of both. We developed a basic theory from the view point of complex Lie sphere geometry for Legendrian submanifolds of the twister space of Gr_4(R^n) and obtained applications to totally complex submanifolds of Gr_4(R^n).

Academic Significance and Societal Importance of the Research Achievements

本研究の目標は四元数多様体の複素部分多様体に関する理論を発展させることにある。これらは四元数ケーラー対称空間の良い性質をもつ部分多様体であると理解され、4次元球面の曲面に関する理論の自然な高次元化とみることもできる。本研究は複素微分幾何と四元数微分幾何が相互作用する四元数複素微分幾何学とでも呼ぶべき興味深い研究領域をなす。Gr_4(R^n)に関わる成果は複素Lie球面幾何学の視点によるGr_4(R^n)の四元数微分幾何学研究の先駆けとなるもので、今後の研究の発展が期待される。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2023 2022 2021 2020 2019 2018

All Journal Article (4 results) (of which Open Access: 2 results,  Peer Reviewed: 3 results) Presentation (8 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] Lie 球面幾何学の複素化と実グラスマン多様体の全複素部分多様体2022

    • Author(s)
      塚田 和美
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2210 Pages: 104-122

    • Related Report
      2021 Research-status Report
    • Open Access
  • [Journal Article] The Gauss maps of transversally complex submanifolds of a quaternion projective space2021

    • Author(s)
      Kazumi Tsukada
    • Journal Title

      Tohoku Math. J.

      Volume: 73 Pages: 1-28

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Lagrangian submanifolds of S^6 and the associative Grassmann manifold2020

    • Author(s)
      K.Enoyoshi and K.Tsukada
    • Journal Title

      Kodai Math.J.

      Volume: 43

    • NAID

      130007812085

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Examples of transversally complex submanifolds of the associative Grassmann manifold2019

    • Author(s)
      K.Enoyoshi and K.Tsukada
    • Journal Title

      Tsukuba J. Math.

      Volume: 43

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Lie 球面幾何学の複素化と実グラスマン多様体の全複素部分多様体2023

    • Author(s)
      塚田 和美
    • Organizer
      日本数学会2023年度年会
    • Related Report
      2022 Research-status Report
  • [Presentation] Lie 球面幾何学の複素化と実グラスマン多様体の全複素部分多様体2023

    • Author(s)
      塚田 和美
    • Organizer
      研究集会「部分多様体幾何とリー群作用2022」
    • Related Report
      2022 Research-status Report
  • [Presentation] Lie 球面幾何学の複素化と実グラスマン多様体の全複素部分多様体2021

    • Author(s)
      塚田 和美
    • Organizer
      京都大学数理解析研究所 共同研究(公開型)
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 四元数多様体の複素部分多様体2020

    • Author(s)
      塚田 和美
    • Organizer
      秋葉原微分幾何セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Quaternionic differential geometry of complex submanifolds in a quaternion projective space2019

    • Author(s)
      K.Tsukada
    • Organizer
      Differential Geometry and its Applications DGA 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Lagrangian submanifolds of S^6 and the associative Grassmann manifold2019

    • Author(s)
      K.Tsukada
    • Organizer
      The 3rd International Workshop ``Geometry of Submanifolds and Integrable Systems''
    • Related Report
      2019 Research-status Report
  • [Presentation] 6次元球面のラグランジュ部分多様体と結合的グラスマン多様体2019

    • Author(s)
      塚田和美
    • Organizer
      研究集会「部分多様体幾何とリー群作用2019」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Examples of transversally complex submanifolds of the associative Grassmann manifold2018

    • Author(s)
      塚田和美、榎吉奏子
    • Organizer
      日本数学会 秋季総合分科会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi