• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on geodesic spaces of non-positive curvature on that groups act, infinite Coxeter groups and finite graphs

Research Project

Project/Area Number 18K03273
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionShizuoka University

Principal Investigator

Hosaka Tetsuya  静岡大学, 理学部, 准教授 (50344908)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2021: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords幾何学的群論 / コクセター群 / コクセター群の同型問題 / グラフの再構成可能予想 / 再構成可能グラフ / 有限単純グラフ
Outline of Final Research Achievements

For given two finitely generated infinite Coxeter groups, the problem to find an algorithm to determine whether they are isomorphic or not is open. Based on previous research, under the untangle-condition on conjugate subsets, by investigating separations of Coxeter generating sets, we obtain some results.
Also, the Reconstruction Conjecture for finite simple graphs is one of the very famous open problems in Graph Theory. By investigating the associated directed graph with two kinds of arrows, we obtain some results.

Academic Significance and Societal Importance of the Research Achievements

無限コクセター群の同型問題は未解決な問題であり, 多くの先行研究によって, 与えられコクセター系に対して, angle-compatibleなコクセター系がすべて求められるならば, 解決するところまで解明されている。コクセター系をパーツに分解して考えるアプローチにより研究を行った。
有限単純グラフの再構成可能予想というグラフ理論の有名な未解決問題に対して, 2種類の矢印を持つ有向グラフを対応させ, 矢印の終点が見つかると2つのグラフは同型になるアイデアで研究を行った。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (2 results)

All 2022 2019

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results)

  • [Journal Article] The reconstruction conjecture for finite simple graphs and associated directed graphs2022

    • Author(s)
      Hosaka Tetsuya
    • Journal Title

      Discrete Mathematics

      Volume: 345 Issue: 7 Pages: 112893-112893

    • DOI

      10.1016/j.disc.2022.112893

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Hyperbolic right-angled Coxeter groups with boundaries as a Sierpinski carpet and a Menger curve2019

    • Author(s)
      Naotsugu Chinen; Tetsuya Hosaka
    • Journal Title

      Topology and its Applications

      Volume: 260 Pages: 70-85

    • DOI

      10.1016/j.topol.2019.03.024

    • Related Report
      2019 Research-status Report
    • Peer Reviewed

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi