Study of mean dimension of dynamical systems
Project/Area Number |
18K03275
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Kyushu University (2019-2020) Kyoto University (2018) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 力学系 / エルゴード理論 / 平均次元 / レート歪み理論 / 情報理論 / マーカー性質 / 周期点 / 位相的エントロピー / 幾何解析 |
Outline of Final Research Achievements |
The purpose of this project to to study mean dimension. Mean dimension is the number of degrees of freedom per unit time for describing dynamical systems. We found the ``double variational principle for mean dimension''. Given a minimal dynamical system, we proved that its mean dimension is equal to the minimax value of the rate distortion dimension (the quantity in information theory). This discovery opens a very new interaction between dynamical systems theory and information theory. We also found several interesting things around mean dimension. In particular, we solved a problem about ``marker property'', which asks whether there is a free dynamical system violating the marker property.
|
Academic Significance and Societal Importance of the Research Achievements |
力学系の研究では,伝統的に情報理論との関連が重要視されており,例えば力学系のエントロピーの理論では,「位相的エントロピー」という量を「測度論的エントロピー」という情報理論的量を用いて表す「変分原理」が有名である.類似の理論を「平均次元」に対してつくることは,平均次元が20年前に定義されて以来自然な問題だったが,これまで進展がなかった.今回,それをついに成し遂げることができた.
|
Report
(4 results)
Research Products
(10 results)