• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Moduli spaces of flat connections and uniformization of 4-orbifolds

Research Project

Project/Area Number 18K03289
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionRitsumeikan University

Principal Investigator

Fukumoto Yoshihiro  立命館大学, 理工学部, 教授 (90341073)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsインスタントン / 負定値同境 / 4次元軌道体 / 一意化 / ザイバーグ・ウィッテン・モノポール / ホモロジー同境 / スプライシング / 有理ホモロジー3球面 / 有理ホモロジー球面 / 有理ホモロジー同境 / ドナルドソン理論 / bounding genus / ホモロジー同境群 / Neumann-Siebenmann不変量 / Seiberg-Witten理論 / 軌道体 / Donaldson理論 / 平坦接続 / 指数定理 / 軌道体の一意化 / レンズ空間 / ホモロジー同境不変量 / 結び目
Outline of Final Research Achievements

A purpose of our research is to use a method of parallel transport to develop a theory of uniformization in dimension four, that is construction of 4-spaces which have finite symmetry from 4-orbifolds obtained by identification of points which are mapped via symmetry operations in the 4-spaces. To achieve this aim, we take approaches from two gauge field theories, which are generalizations of electromagnetism, called Donaldson theory and Seiberg-Witten theory. Several results are obtained in our research. In particular, in Donaldson theory, we obtained constraints on the topology of negative-deifinite cobordisms among Seifert fibered rational homology 3-spheres by an application of bubbling phenomena of instantons on negative-definite 4-orbifolds. On the other hand, in Seiberg-Witten theory, we apply an orbifold version of 10/8-inequality to obtain estimates of a homology cobordism invariant of homology 3-spheres called bounding genus for splicings among plumbed homology 3-spheres.

Academic Significance and Societal Importance of the Research Achievements

レンズ空間の対生成を応用した、Seifertファイバー有理ホモロジー3球面の負定値同境に関する拘束条件は、Fintushel-Stern不変量などによる従来の手法とは異なり、負定値同境の整数係数のホモロジーに関するより精密な情報を得ることが可能となった点に注意したい。また、bounding genusは、3次元ホモロジー球面のホモロジー同境群において、ある種の距離を与える重要なホモロジー同境不変量であり、現在までのところ手術公式が知られていなかった。本結果によって、とくにスプライシング操作に関する振る舞いが解析可能となり、より広いクラスのホモロジー球面の間の距離を評価することが可能となった。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (10 results)

All 2021 2020 2019 2018 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 1 results,  Invited: 6 results) Remarks (3 results)

  • [Journal Article] On negative-definite cobordisms among lens spaces of type (m,1) and uniformization of four-orbifolds2019

    • Author(s)
      Yoshihiro Fukumoto
    • Journal Title

      Algebraic & Geometric Topology

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 4次元軌道体のゲージ理論とその応用2021

    • Author(s)
      福本善洋
    • Organizer
      京都大学大学院 理学研究科 数学教室 談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] インスタントン・モジュライ空間の向きづけ可能性2021

    • Author(s)
      福本 善洋
    • Organizer
      微分トポロジー'21
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Bubbles, Orbifold metric and connections, Orienting moduli spaces2021

    • Author(s)
      福本 善洋
    • Organizer
      勉強会 「特異インスタントンとKhovanovホモロジー」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 有理ホモロジー3球面のbounding genusと結び目のコンコーダンス2020

    • Author(s)
      福本 善洋
    • Organizer
      微分トポロジー'20
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] オービフォルド上のインスタントン・モジュライ空間の向きについて2020

    • Author(s)
      福本善洋
    • Organizer
      4-Dimensional Topology and Gauge Theory
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Instantons and uniformization of orbifolds2018

    • Author(s)
      Yoshihiro Fukumoto
    • Organizer
      East Asian Conference on Gauge theory and Related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Yoshihiro FUKUMOTO - Professor 立命館大学

    • URL

      https://research-db.ritsumei.ac.jp/rithp/k03/resid/S000673?lang=en

    • Related Report
      2023 Annual Research Report
  • [Remarks] Yoshihiro Fukumoto's Homepage

    • URL

      http://www.math.ritsumei.ac.jp/~yfukumot/index.html

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report 2020 Research-status Report 2019 Research-status Report 2018 Research-status Report
  • [Remarks] Yoshihiro FUKUMOTO Professor - 立命館大学

    • URL

      http://research-db.ritsumei.ac.jp/Profiles/62/0006142/prof_e.html

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi