• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Essential selfadjointness of the Laplacian of Riemannian manifolds and Lioville property

Research Project

Project/Area Number 18K03290
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionTohoku University (2022-2023)
Hokkaido University (2018-2021)

Principal Investigator

Masamune Jun  東北大学, 理学研究科, 教授 (50706538)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsラプラシアン / 本質的自己共役性 / 保存則 / リュービル性 / グラフ / 容量 / ポテンシャル / 自己共役 / リーマン多様体 / 局所的性質 / シュレディンガー作用素 / シュレディンガー作用素の保存則
Outline of Final Research Achievements

In collaboration with Schmidt, we defined the conservation law of heat for the Schrodinger operator and obtained necessary and sufficient conditions for the Kasiminski-type to be satisfied. This result was published in Math Ann. In collaboration with Hua and Wojciechowski, we clarified the relation between essential self adjointness and L^2 Liouville property for the Laplacian on continua and discrete graphs, and the results were published by JFAA. In collaboration with Hinz and Suzuki, it was shown that for a noncomplete Riemannian manifold obtained by removing compact and closed sets from a complete space, a necessary and sufficient condition for essential self adjointness is that the Cauchy boundary is polar at some appropriate capacity. These results have been published in Non Linear Analysis. In collaboration with Inoue, Ku, and Wojciechowski, we gave another proof of the classical Hamburger's theorem for the Laplacian over natural numbers. We submitted this result to a journal.

Academic Significance and Societal Importance of the Research Achievements

ラプラシアンの本質的自己共役性は対応するダイナミックスの境界や特異集合の付近での振る舞いが決定されることと同値であるため,解析学や幾何学における古くから研究をされている基本的な問題であるが,未だ分かっていないことが多く,とりわけ,空間が非完備な場合には一般的な判断基準が存在しなかった.本研究課題ではこの問題に対して出来るだけ一般的な状況で「コーシー境界が極」であることと,本質的自己共役性の関係を調べることで迫った.連続体や離散空間を調べた結果,完全な回答を得られたわけではないが,今回調べた全てのケースにおいては,これらの概念は同地であることが明らかにされた.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (15 results)

All 2023 2022 2019 2018 Other

All Int'l Joint Research (4 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (9 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results)

  • [Int'l Joint Research] City University of New York(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] ニューヨーク市立大学(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Jena University/Bielefeld University(ドイツ)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] City University of New York(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Removable sets and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-uniqueness on manifolds and metric measure spaces2023

    • Author(s)
      Hinz M.、Masamune J.、Suzuki K.
    • Journal Title

      Nonlinear Analysis

      Volume: 234 Pages: 113296-113296

    • DOI

      10.1016/j.na.2023.113296

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A generalized conservation property for the heat semigroup on weighted manifolds2019

    • Author(s)
      Masamune, J; Schmidt, M
    • Journal Title

      Mathematische Annalen

      Volume: 17 Issue: 3-4 Pages: 1-36

    • DOI

      10.1007/s00208-019-01888-3

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Capacities and essential self adjointness of the Laplacian2023

    • Author(s)
      正宗淳
    • Organizer
      Geometry and Probability
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 非完備リーマン多様体のラプラシアンの自己共役拡張について2023

    • Author(s)
      正宗淳
    • Organizer
      東京確率論セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Capacities and essential self adjointness of the Laplacian2023

    • Author(s)
      Jun Masamune
    • Organizer
      Geometry and Probability 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] L2 Liouville property and it's applications on Riemannian manifolds2022

    • Author(s)
      正宗淳
    • Organizer
      東北大学応用数理解析セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] L2 Liouville property and it's applications on Riemannian manifolds2022

    • Author(s)
      正宗淳
    • Organizer
      応用解析研究会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] リュービル性と関連する話題2022

    • Author(s)
      正宗淳
    • Organizer
      北海道大学偏微分方程式セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] L2 Liouville property and it's applications on Riemannian manifolds2022

    • Author(s)
      正宗淳
    • Organizer
      応用解析研究会
    • Related Report
      2021 Research-status Report
  • [Presentation] L2 Liouville property and it's applications on Riemannian manifolds2022

    • Author(s)
      正宗淳
    • Organizer
      東北大学 応用数理解析セミナー
    • Related Report
      2021 Research-status Report
  • [Presentation] Generalized conservation property of Brownian motion with killing inside2018

    • Author(s)
      Jun Masamune
    • Organizer
      2018 SPRING PROBABILITY WORKSHOP
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi