• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Handlebody-knots and augmented Alexander invariants

Research Project

Project/Area Number 18K03292
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Ishii Atsushi  筑波大学, 数理物質系, 准教授 (00531451)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords結び目理論
Outline of Final Research Achievements

A handlebody-knot is a handlebody embedded in the 3-sphere. The notion of a handlebody-knot is a natural generalization of that of a knot, since a genus one handlebody-knot corresponds to a usual knot. The results of this study are as follows: We defined an MCQ twisted Alexander ideal of handlebody-knots. We present a method to obtain an MCQ Alexander pair from a quandle Alexander pair, where an MCQ Alexander pair is a pair of maps that is used to define an MCQ twisted Alexander ideal.

Academic Significance and Societal Importance of the Research Achievements

結び目理論はひもという素朴なものを媒体に、空間の形やDNA、暗号理論など様々な分野と関わりを持っています。ハンドル体結び目理論は結び目理論の一分野で、空間に埋め込まれたハンドル体を研究対象にします。結び目は粒子の運動の軌跡と捉えることができますが、ハンドル体結び目はこれらの粒子に分裂・合体を許したものに対応します。二つのハンドル体結び目を判別するために不変量が必要になりますが、本研究ではMCQアレクサンダーイデアルと呼ばれる不変量を構築しました。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2021 2020 2019 2018

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Cocycles of G-Alexander biquandles and G-Alexander multiple conjugation biquandles2021

    • Author(s)
      Ishii Atsushi、Iwakiri Masahide、Kamada Seiichi、Kim Jieon、Matsuzaki Shosaku、Oshiro Kanako
    • Journal Title

      Topology and its Applications

      Volume: 301 Pages: 107512-107512

    • DOI

      10.1016/j.topol.2020.107512

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Row relations of twisted Alexander matrices and shadow quandle 2-cocycles2021

    • Author(s)
      Ishii Atsushi、Oshiro Kanako
    • Journal Title

      Topology and its Applications

      Volume: 301 Pages: 107513-107513

    • DOI

      10.1016/j.topol.2020.107513

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A multiple group rack and oriented spatial surfaces2020

    • Author(s)
      Atsushi Ishii, Shosaku Matsuzaki and Tomo Murao
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 29 Issue: 07 Pages: 2050046-2050046

    • DOI

      10.1142/s0218216520500467

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Biquandle (co)homology and handlebody-links2018

    • Author(s)
      Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki, Kanako Oshiro
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 27 Issue: 11 Pages: 1843011-1843011

    • DOI

      10.1142/s0218216518430113

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] On a quandle derivative2020

    • Author(s)
      石井敦
    • Organizer
      カンドルと対称空間
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Generalized quandle cocycle invariants and shadow quandle cocycle invariants2019

    • Author(s)
      Atsushi Ishii
    • Organizer
      The Third Pan Pacific International Conference on Topology and Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Fox derivatives for quandles2019

    • Author(s)
      石井敦
    • Organizer
      日本数学会年会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi