• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study of various complexities of pseudo-Anosov maps and hyperbolic fibered 3-manifolds

Research Project

Project/Area Number 18K03299
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionOsaka University

Principal Investigator

Kin Eiko  大阪大学, 全学教育推進機構, 教授 (80378554)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords写像類群 / 擬アノソフ / 組ひも群 / エントロピー / 曲線グラフ / 漸近的移動距離 / リサージュ曲線 / 位相的エントロピー / 3次元双曲多様体 / へガード分解 / 3次元多様体 / 結び目理論 / 曲線複体 / 双曲体積 / 三次元双曲多様体 / ファイバー
Outline of Final Research Achievements

We studied two invariants of pseudo-Anosov elements in the mapping class group. One is the entropy which is the translation length of the pseudo-Anosov element on the Teichmuller space. The other is the asymptotic translation length of the pseudo-Anosov element on the curve complex. (1) We gave a new construction of pseudo-Anosov braids with small normalized entropies. As an application, we determine asymptotic behaviors of minimal entropies of pseudo-Anosov elements in several subgroups (or several subsets) of mapping class groups. (Joint with Hirose, and Hirose Iguchi, Koda)(2) Given a fibered 3-manifold together with the fibered face, we give a general upper bound of asymptotic translation lengths of pseudo-Anosov monodromies associated with the fibered classes in the fibered cone.
(Joint with Baik, Shin and Wu)

Academic Significance and Societal Importance of the Research Achievements

曲面の写像類群の大部分は擬アノソフ写像類である. 擬アノソフ写像類の研究は力学系理論, 3次元多様体論, 双曲幾何学などのいくつかの分野と密接に関連する. 擬アノソフ写像類の代表的な不変量(エントロピー, 漸近的移動距離, 写像トーラスの体積)とこれらの不変量の関係の研究は位相幾何学(特に写像類群の研究)において基本的なテーマであり, それ故に学術的意義がある.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (31 results)

All 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (10 results) Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (11 results) (of which Int'l Joint Research: 8 results,  Invited: 7 results) Remarks (5 results)

  • [Int'l Joint Research] KAIST(韓国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Wisconsin--Madison(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] KAIST(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Georgia/University of Wisconsin--Madison(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Technion(イスラエル)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] KAIST(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Georgia/Rutgers University/Michigan state University(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Tongji University(中国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] KAIST(韓国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Georgia/Rutgers University(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Lissajous 3-braids2022

    • Author(s)
      Eiko Kin, Hiroaki Nakamura, Hiroyuki Ogawa
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: --

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Asymptotic translation lengths and normal generation for pseudo-Anosov monodromies of fibered 3-manifolds2022

    • Author(s)
      Hyungryul Baik, Eiko Kin, Hyunshik Shin, Chenxi Wu
    • Journal Title

      Algebraic and Geometric Topology

      Volume: --

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Goeritz groups of bridge decompositions,2021

    • Author(s)
      Susumu Hirose, Daiki Iguchi, Eiko Kin, Yuya Koda
    • Journal Title

      International Mathematics Research Notices,

      Volume: - Issue: 12 Pages: 9308-9356

    • DOI

      10.1093/imrn/rnab001

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A construction of pseudo-Anosov braids with small normalized entropies2021

    • Author(s)
      Hirose Susumu、Kin Eiko
    • Journal Title

      New York Journal of mathematics

      Volume: 印刷中

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] On hyperbolic surface bundles over the circle as branched double covers of the $3$-sphere2020

    • Author(s)
      Hirose Susumu、Kin Eiko
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 148 Issue: 4 Pages: 1805-1814

    • DOI

      10.1090/proc/14825

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Braids and fibered double branched covers of 3-manifolds2022

    • Author(s)
      金 英子
    • Organizer
      Low dimensional topology and number theory XIII
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Braids, triangles and Lissajous curves2021

    • Author(s)
      金 英子
    • Organizer
      力学系理論の最近の進展とその応用
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Braids, triangles and Lissajous curves2021

    • Author(s)
      金 英子
    • Organizer
      Topics at the Interface of Low Dimensional Group Actions and Geometric Structures (Online workshop)
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Problem on minimal pseudo-Anosov entropies2020

    • Author(s)
      金 英子
    • Organizer
      The 15th East Asian Conference on Geometric Topology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Fibered 3-manifolds and asymptotic translation length of pseudo-Anosov maps on the curve complex2019

    • Author(s)
      金 英子
    • Organizer
      Topological and probabilistic methods in low-dimensional dynamics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Fibered 3-manifolds and asymptotic translation length of pseudo-Anosov maps on the curve complex2019

    • Author(s)
      金 英子
    • Organizer
      拡大KOOKセミナー2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Branched virtual fibering theorem and pseudo-Anosovs with small entropies2019

    • Author(s)
      金 英子
    • Organizer
      14th East Asian Conference on Geometric Topology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Branched virtual fibering theorem and pseudo-Anosovs with small entropies2018

    • Author(s)
      金 英子
    • Organizer
      Classical and quantum three manifold topology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On Sakuma's branched virtual fibering theorem2018

    • Author(s)
      金 英子
    • Organizer
      拡大KOOKセミナー2018
    • Related Report
      2018 Research-status Report
  • [Presentation] Pseudo-Anosov braids with small normalized entropies: construction and application2018

    • Author(s)
      金 英子
    • Organizer
      GAGTA 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A construction of pseudo-Anosov braids with small normalized entropies2018

    • Author(s)
      金 英子
    • Organizer
      Geometry and Topology of 3-manifolds workshop
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] Eiko Kin のページ

    • URL

      http://www4.math.sci.osaka-u.ac.jp/~kin/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] 金 英子 research map

    • URL

      https://researchmap.jp/eiko_kin

    • Related Report
      2021 Annual Research Report
  • [Remarks] 金 英子 research map

    • URL

      https://researchmap.jp/eiko_kin

    • Related Report
      2020 Research-status Report
  • [Remarks] Eiko Kin's page

    • URL

      http://www4.math.sci.osaka-u.ac.jp/~kin/

    • Related Report
      2019 Research-status Report 2018 Research-status Report
  • [Remarks] 金 英子 research map

    • URL

      https://researchmap.jp/read0141524/

    • Related Report
      2019 Research-status Report 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi