• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of submanifolds in symmetric spaces and their time evolution along various curvature flows

Research Project

Project/Area Number 18K03311
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionTokyo University of Science

Principal Investigator

Koike Naoyuki  東京理科大学, 理学部第一部数学科, 教授 (00281410)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords平均曲率流 / 対称空間 / 等径部分多様体 / 複素等焦部分多様体 / 固有フレッドホルム部分多様体 / ゲージ理論 / カラビ・ヤウ構造 / 特殊ラグランジュ部分多様体 / 等焦部分多様体 / カラビ・ヤウ多様体 / 部分多様体 / 逆平均曲率流 / Polar作用 / Kac-Moody型無限次元対称空間
Outline of Final Research Achievements

Main research results in this research subject are as follows. First, we proved the homogeneity theorem for isoparametric submanifolds in a symmetric spaces of non-compact type admitting a reflective focal submanifold by using the complexification and the linearization to an infinite dimensional Hilbert space.
Secondly we proved a certain kind of collapsing theorem for the invariant regularized mean curvature flow in a Hilbert space equipped with a certain kind of Hilbert Lie group action and made the theory based to apply the collapsing theorem to the Gauge theory. Thirdly we gave a construction of Calabi-Yau structures on the complexification of a symmetric space of compact type and a construction of special Lagrangian submanifolds in the Calabi-Yau manifold.

Academic Significance and Societal Importance of the Research Achievements

本研究課題における研究成果は,微分幾何学の見地から,ゲージ理論や超対称性理論をはじめとする理論物理学を研究する上で,重要な結果になるのではないかと考えている。特に,研究成果の一つである正則化された平均曲率流の研究をゲージ理論へ応用するために土台となる理論の構築は,今後,注目されるのではないかと考えている。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (15 results)

All 2021 2020 2019 2018 Other

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 6 results,  Invited: 5 results) Book (2 results) Remarks (1 results)

  • [Journal Article] CLASSIFICATION OF ISOPARAMETRIC SUBMANIFOLDS ADMITTING A REFLECTIVE FOCAL SUBMANIFOLD IN SYMMETRIC SPACES OF NON-COMPACT TYPE2020

    • Author(s)
      Koike Naoyuki
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 57 Issue: 1 Pages: 207-246

    • DOI

      10.18910/73746

    • NAID

      120006786533

    • ISSN
      00306126
    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2010771

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Calabi-Yau structures and special Lagrangian submanifolds of complexified symmetric spaces2019

    • Author(s)
      Koike Naoyuki
    • Journal Title

      Illinois Journal of Mathematics

      Volume: 63 Issue: 4 Pages: 575-600

    • DOI

      10.1215/00192082-8018607

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Gauss maps of the Ricci-mean curvature flow2018

    • Author(s)
      Naoyuki Koike, Hikaru Yamamoto
    • Journal Title

      Geometriae Dedicata

      Volume: 194 Issue: 1 Pages: 169-185

    • DOI

      10.1007/s10711-017-0271-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A modified mean curvature flow in Euclidean space and soap bubbles in symmetric spaces2018

    • Author(s)
      Naoyuki Koike
    • Journal Title

      Geometriae Dedicata

      Volume: 195 Issue: 1 Pages: 1-17

    • DOI

      10.1007/s10711-017-0273-6

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Mean curvature flow of certain kind of isoparametric foliation on non-compact symmetric spaces2018

    • Author(s)
      Naoyuki Koike
    • Journal Title

      CUBO A Mathematical Journal

      Volume: 20 Issue: 3 Pages: 13-30

    • DOI

      10.4067/s0719-06462018000300013

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] The existence and the uniqueness of regularized mean curvature flows2021

    • Author(s)
      Naoyuki Koike
    • Organizer
      International Workshop on Geometric Evolution Equations and Related Fields
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Calabi-Yau structures and Special Lagrangian submanifolds of complexified symmetric spaces2020

    • Author(s)
      Naoyuki Koike
    • Organizer
      The 18th OCAMI-RIRCM Joint Differential Geometry Workshop ``Differential Geometry of Submanifolds in Symmetric Spaces and Related Problems’’(日本学術振興会 二国間交流事業 韓国 (NRF) )
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Isoparametric submanifolds admitting a reflective focal submanifold in symmetric spaces of non-compact type2019

    • Author(s)
      Naoyuki Koike
    • Organizer
      Workshop on the isoparametric theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Regularized mean curvature flow in a Hilbert space and its application to the Gauge theory2019

    • Author(s)
      Naoyuki Koike
    • Organizer
      The 22 Workshop on Differential Geometry of Submanifolds in Symmetric Spaces and The 17th RIRCM-OCAMI Joint Differential Geometry
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Regularized mean curvature flow in a Hilbert space and its application to the Gauge theory2019

    • Author(s)
      Naoyuki Koike
    • Organizer
      Symmetry and Shape (Celebrating the 60th birthday of Prof. J. Berndt)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Regularized mean curvature flow in a Hilbert space and its application to the gauge theory2019

    • Author(s)
      Naoyuki Koike
    • Organizer
      RIMS研究集会「非線形偏微分方程式における定性的理論」
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Regularized mean curvature flow in a Hilbert space and its application to the gauge theory2019

    • Author(s)
      小池直之
    • Organizer
      日本数学会
    • Related Report
      2018 Research-status Report
  • [Book] 理論物理に潜む部分多様体幾何2021

    • Author(s)
      小池 直之
    • Total Pages
      440
    • Publisher
      共立出版
    • ISBN
      9784320114401
    • Related Report
      2020 Research-status Report
  • [Book] 平均曲率流-部分多様体の時間発展-2019

    • Author(s)
      小池直之
    • Total Pages
      376
    • Publisher
      共立出版
    • ISBN
      9784320113763
    • Related Report
      2018 Research-status Report
  • [Remarks] 小池直之研究室

    • URL

      https://www.rs.kagu.tus.ac.jp/~koike/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi