• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of geometric structures via holomorphic curves

Research Project

Project/Area Number 18K03313
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionRikkyo University

Principal Investigator

Nishinou Takeo  立教大学, 理学部, 准教授 (50420394)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords変形理論 / 正則曲線 / 代数曲線 / モース理論 / 写像の変形理論 / 複素幾何学 / シンプレクティック幾何学
Outline of Final Research Achievements

I conducted research on holomorphic curves on complex manifolds and related objects. In particular, I developed a method to determine the obstructions to deforming singular curves on complex surfaces through local calculations. As an application of this method, I proved a correspondence between holomorphic curves on Abelian surfaces and tropical curves on real 2-dimensional tori, which was a long-standing problem. On the other hand, by investigating gauge theory on 2-dimensional complex tori, I proved that as a limit of Hermitian-Yang-Mills connections on complex tori, a Lagrangian submanifold on the mirror torus naturally correspond, and I partially proved the mirror symmetry conjecture related to D-branes.

Academic Significance and Societal Importance of the Research Achievements

以前知られていた手法では扱いが難しい対象について, 新しい手法を開発することにより研究を可能にした。具体的には, 計算が難しい障害がある場合の変形理論について, 障害の計算を局所的な計算に帰着させることにより, 長年未解決であった問題の解決に役立てた。また, これも扱いが難しい, 横断正則性が成り立たない状況でのゲージ理論について, 新たな手法を開発することで研究を進め, ミラー対称性予想の一部を証明した。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2024 2023 2021 2019

All Journal Article (5 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results)

  • [Journal Article] Obstructions to deforming maps from curves to surfaces2024

    • Author(s)
      NISHINOU Takeo
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 76 Issue: 1 Pages: 51-71

    • DOI

      10.2969/jmsj/86878687

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] パッチワーキングとトロピカル曲線2023

    • Author(s)
      Nishinou Takeo
    • Journal Title

      数学

      Volume: 75 Pages: 225-245

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Integration of vector fields on cell complexes and Morse theory2023

    • Author(s)
      Takeo Nishinou
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 522 Issue: 1 Pages: 126982-126982

    • DOI

      10.1016/j.jmaa.2022.126982

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Convergence of Hermitian-Yang-Mills connections on two-dimensional Kahler tori and mirror symmetry2021

    • Author(s)
      Takeo Nishinou
    • Journal Title

      Letters in Mathematical Physics

      Volume: 111 Issue: 2

    • DOI

      10.1007/s11005-021-01405-1

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Obstructions to deforming maps from curves to surfaces2019

    • Author(s)
      Takeo Nishinou
    • Journal Title

      Oberwolfach reports

      Volume: 21

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Presentation] Deformation of singular curves on surfaces2023

    • Author(s)
      Takeo Nishinou
    • Organizer
      Seminar on Real and Complex Geometry (on line)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Deformation of curves on surfaces2021

    • Author(s)
      Takeo Nishinou
    • Organizer
      Degenerations and models of algebraic varieties and related topics
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Obstruction to deforming maps from curves to surfaces2019

    • Author(s)
      Takeo Nishinou
    • Organizer
      Tropical Geometry: new directions
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Obstruction to deforming maps from curves to surfaces2019

    • Author(s)
      西納 武男
    • Organizer
      幾何学における代数的・組み合わせ論的視点
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi