• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of group actions on operator algebras from K-theoretic aspect

Research Project

Project/Area Number 18K03321
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionChiba University

Principal Investigator

Matui Hiroki  千葉大学, 大学院理学研究院, 教授 (40345012)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords作用素環 / 群作用 / 極小力学系 / 解析学
Outline of Final Research Achievements

Classification of group actions is one of the most important subjects in the theory of operator algebras. In the collaboration with M. Izumi (Kyoto University), I completely classified outer actions on poly-Z groups on Kirchberg algebras. Such a broad classification result has not been known so far.
From minimal dynamical systems on the Cantor set, one can construct etale groupoids and groupoid C*-algebras. Recently, homology groups and topological full groups of these groupoids have attracted much attention. I proved that a long exact sequence of homology groups arises from a certain pair of etale groupoids.

Academic Significance and Societal Importance of the Research Achievements

作用素環という無限次元の代数的な構造が持つ対称性の理解を深めることができた。解析学と代数学と幾何学が交錯する点が特徴的である。また、カントール集合という0次元の空間上の構造の対称性についても研究を行い、ホモロジー群を通して理解を深めた。作用素環とカントール集合は全く異なる対象ではあるが、直接目で見ることができない対称性を解明した点で価値観を共有している。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2022 2021 2020 2019

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] Long exact sequences of homology groups of etale groupoids2022

    • Author(s)
      Matui Hiroki
    • Journal Title

      Discrete and Continuous Dynamical Systems

      Volume: 42 Issue: 11 Pages: 5239-5239

    • DOI

      10.3934/dcds.2022095

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Poly-Z group actions on Kirchberg algebras II2021

    • Author(s)
      Izumi Masaki、Matui Hiroki
    • Journal Title

      Inventiones mathematicae

      Volume: 224 Issue: 3 Pages: 699-766

    • DOI

      10.1007/s00222-020-01019-9

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Poly-Z group actions on Kirchberg algebras I2020

    • Author(s)
      M, Izumi, H. Matui
    • Journal Title

      Int. Math. Res. Not. IMRN.

      Volume: 印刷中 Issue: 16 Pages: 12077-12154

    • DOI

      10.1093/imrn/rnz140

    • Related Report
      2021 Research-status Report 2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A weak homotopy equivalence type result related to Kirchberg algebras2020

    • Author(s)
      Izumi Masaki、Matui Hiroki
    • Journal Title

      Journal of Noncommutative Geometry

      Volume: 14 Issue: 4 Pages: 1325-1363

    • DOI

      10.4171/jncg/392

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A weak homotopy equivalence type result related to Kirchberg algebras2020

    • Author(s)
      M, Izumi, H. Matui
    • Journal Title

      J. Noncommut. Geom.

      Volume: 印刷中

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A weak homotopy equivalence type result related to Kirchberg algebras2019

    • Author(s)
      M. Izumi, H. Matui
    • Journal Title

      J. Noncommut. Geom.

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Various examples of topological full groups2020

    • Author(s)
      H. Matui
    • Organizer
      Symmetry in Newcastle
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the homology groups of totally disconnected etale groupoids2019

    • Author(s)
      H. Matui
    • Organizer
      Measurable, Borel, and Topological dynamics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the homology groups of totally disconnected etale groupoids2019

    • Author(s)
      H. Matui
    • Organizer
      Recent Developments in Operator Algebras
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi