Study of induced representation of reductive Lie groups and Lie algebras
Project/Area Number |
18K03322
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12010:Basic analysis-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 一般化バルマ加群 / 半単純リー代数 / ユニタリ表現 / 微分不変量 / 放物型部分代数 / リー代数 / 旗多様体 / 微分不変式 / 簡約リー代数 / 簡約リー群 / 放物幾何 / Whittakerモデル / 一般化Verma加群 |
Outline of Final Research Achievements |
Let g be a complex reductive Lie algebra and let p be a parabolic Lie subalgebra of g. Let V_1 and V_2 be finite-dimensional irreducible representation of p. We denote by M_1 and M_2 be induced representations from V_1 and V_2 from p, respectively. We proved that the dimension of the space of the homomorphisms of M_1 to M_2 is bounded by the product of the dimension of V_1 and V_2. Using translation principle, we obtain an estimate of the dimension of the space of the homomorphisms of M_1 to M_2 only depending on (g, p).
|
Academic Significance and Societal Importance of the Research Achievements |
表現論は対称性を研究する学問であり数学並びに自然科学の多くの分野へ応用がある。 連続的な対称性はリー群という数学的対象で記述でき,簡約リー群は対称性に置いて非可換な本質的な部分を担っている基本的な対象である。簡約リー代数は簡約リー群の局所的な構造を記述する代数的対象であり、簡約リー群や簡約リー代数の表現論は数学のみならず物理学や化学などに置いて多くの応用を持つ現代数学における大きな分野を形作っている。一般化されたVerma加群の間の準同型の分類はその中で現れた自然な問題であり、表現論内部だけでなく放物幾何などに置いても重要な意味を持つ。
|
Report
(6 results)
Research Products
(3 results)