• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of integrable systems around the Painleve equations

Research Project

Project/Area Number 18K03323
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionThe University of Tokyo

Principal Investigator

Sakai Hidetaka  東京大学, 大学院数理科学研究科, 准教授 (50323465)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsパンルヴェ方程式 / 差分方程式 / 特殊函数 / 超幾何函数
Outline of Final Research Achievements

In this research project, one paper has been published in an academic journal and another paper is in preparation.
In the published paper, in collaboration with T. Mase and A. Nakamura, we proposed a discrete Hamiltonian for the discrete Painleve equation and showed that the equation can be easily written by using it.
The paper being prepared is a joint research with T. Hosoi. We determined the form of a fourth-order homogeneous quadratic differential equation (under some simple assumption) that has only t = 0, 1, infinity as singular points, all of which are of type (H). It contains the bilinear form of the 6th Painleve equation.

Academic Significance and Societal Importance of the Research Achievements

パンルヴェ6型方程式は非常に複雑な形をした方程式であり,その具体形を何らかの特徴づけから求めるのには大変な計算を要することが多い.細井氏との共同研究の結果は,特異点の近くにおける方程式の局所的な様子だけから方程式を決定できるという意味で,フックス型線型微分方程式における超幾何微分方程式の特徴づけを想起させ,面白い事象だと思う.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2022 2020 2019 2018

All Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 5 results) Book (1 results) Funded Workshop (1 results)

  • [Presentation] The differential equations of type (H) with 3 singular points (Joint work with T. Hosoi)2022

    • Author(s)
      坂井秀隆
    • Organizer
      アクセサリーパラメーター研究会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Painleve 方程式の世界2020

    • Author(s)
      坂井秀隆
    • Organizer
      日本数学会,秋季総合分科会,函数方程式論分科会特別公演
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Painleve 超越函数と共形場理論2020

    • Author(s)
      坂井秀隆
    • Organizer
      2020年度表現論シンポジウム
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Discrete Hamiltonians of discrete Painlev\'e equations (Joint work with T. Mase and A. Nakamura)2019

    • Author(s)
      Sakai, Hidetaka
    • Organizer
      Integral Systems Workshop 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] CFT approach to the q-Painleve equations (joint work with M. Jimbo and H. Nagoya)2018

    • Author(s)
      Sakai, Hidetaka
    • Organizer
      Asymptotic, Algebraic and Geometric Aspects of Integral Systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] CFT approach to the q-Painleve equations (joint work with M. Jimbo and H. Nagoya)2018

    • Author(s)
      Sakai, Hidetaka
    • Organizer
      可積分系理論から見える数理構造とその応用
    • Related Report
      2018 Research-status Report
    • Invited
  • [Book] 4-dimensional Painleve-type equations2018

    • Author(s)
      Hiroe, Kazuki and Kawakami, Hiroshi and Nakamura, Akane and Sakai, Hidetaka
    • Total Pages
      185
    • Publisher
      Mathematical Society of Japan, Tokyo
    • ISBN
      9784864970877
    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Differential Systems: from theory to computer mathematics2019

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi