• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Singular limit of the magnetic Schroedinger operators and related inequalities

Research Project

Project/Area Number 18K03329
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKyoto Institute of Technology

Principal Investigator

Mine Takuya  京都工芸繊維大学, 基盤科学系, 教授 (90378597)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords数理物理学 / 大域解析学 / 量子力学 / スペクトル・散乱理論 / アハラノフ・ボーム効果 / 点相互作用 / 数理物理 / 関数解析学 / 関数方程式論 / 解析学
Outline of Final Research Achievements

In Iwatsuka, Shimada, and I (2009), we prove that the Schroedinger operator with the magnetic field enclosed in a torus converges in the norm resolvent sense to some limit operator, as the thickness of the torus tends to 0. We try to improve their proof, and make sure that the use of the magnetic Rellich inequality simplifies their proof. We also try to prove the trace class convergence in the above limit, but it is incompleted yet.
Related with this issue, we study an open problem `the self-adjointness of the Schroedinger operator with the Poisson random point interaction', and solve it affirmatively, in cooperation with F. Nakano and M. Kaminaga. About this operator, we also determine the structure of the spectrum, and the asymptotic behavior of the integrated density of states.

Academic Significance and Societal Importance of the Research Achievements

磁場付きシュレディンガー作用素の特異極限に関する結果はまだ完成に至らなかったが、磁場付きRellich の不等式の応用により証明が改良されることは確認されたため、その手法を洗練させることにより、関連する方程式の解析への応用が期待される。一方で、「ポアソン点相互作用をもつシュレディンガー作用素の自己共役性」に関する結果は、この作用素を解析する際の基礎を築いたという意味で重要な貢献と言える。この作用素の解析では、数値計算によるシミュレーションが比較的容易であり、パーコレーション理論などの確率論諸分野とも関連するため、確率論的手法を援用することにより、さらなる発展が見込まれている。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2018 Other

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results) Remarks (2 results)

  • [Journal Article] A Self-adjointness Criterion for the Schroedinger Operator with Infinitely Many Point Interactions and Its Application to Random Operators2020

    • Author(s)
      Masahiro Kaminaga, Takuya Mine and Fumihiko Nakano
    • Journal Title

      Annales Henri Poincare

      Volume: 21 Issue: 2 Pages: 405-435

    • DOI

      10.1007/s00023-019-00869-1

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Solvable models in the scattering theory for the Aharonov-Bohm effect2018

    • Author(s)
      峯 拓矢
    • Journal Title

      数理解析研究所講究録

      Volume: 2074 Pages: 68-79

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Presentation] Schroeodinger operators with point interactions2021

    • Author(s)
      峯 拓矢
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Schroedinger operators with random point interactions2020

    • Author(s)
      Takuya Mine
    • Organizer
      スペクトル散乱理論とその周辺
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Poisson point interactions in a constant magnetic field2020

    • Author(s)
      Takuya Mine
    • Organizer
      Schroedinger Operators and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Integrated density of states for the Poisson point interaction2020

    • Author(s)
      Takuya Mine
    • Organizer
      Spectra of Random Operators and Related Topics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 京都工芸繊維大学研究者総覧

    • URL

      https://www.hyokadb.jim.kit.ac.jp/top/ja.html

    • Related Report
      2020 Research-status Report 2018 Research-status Report
  • [Remarks] 京都工芸繊維大学研究者総覧

    • URL

      https://www.hyokadb.jim.kit.ac.jp/profile/ja.16ca147af00e4743ffdaee2f8b75c27a.html

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi